
Data Agents System: A Query Service based on Mobile Agent Technology

Rosane Maria Martins, Luci Pirmez, Luiz Fernando Rust da Costa Carmo
NCE/UFRJ – Núcleo de Computação Eletrônica/Universidade Federal do Rio de Janeiro

Tel.: +55 21 598-3160 – Caixa Postal: 2324 – Rio de Janeiro - RJ
Brasil

ABSTRACT

The rapid growth of the Internet and the World Wide Web
(Web) provides access to vast amounts of valuable
information information. However, the problem of
information overload is an obstacle to the practical use of
potentially useful information on the Web. The use of
mobile agents in this kind of applications represents a
novel approach and potentially solves most of the
problems that exist in centralizes client;server solutions,
because they are programs with a persistent identity
which moves around a network and can communicate
with this environment and other agents. We present a
possible solution for this problem: the Data Agent system
- a mobile agent application for the retrieval of distributed
structured information in a scenario of several on-line
bookstores. This system was developed for Web-based
distributed access to database systems based on Java-
based mobile agents. This paper describes the project
architecture and its implementation that is based on
IBM´s Aglets Workbench. It also emphasizes the obtained
results with the several experiments realized, concluding
that the implementation of the system shows that its
performance is comparable to, and in some case
outperforms the current approach.

KEY WORDS: Mobile Agents, Aglets, Multi-
Agents System

1. INTRODUCTION

Nowadays the number of available information sources is
growing rapidly. Finding and combining the relevant
information is becoming a critical task. There is a need
for facilities that perform these integrating tasks and thus
overcome problems such as distribution and
heterogeneity. These facilities are often referred to as
integrated systems. In a integrated system, the user is not
exactly aware of which and how many information
sources that are used, neither does he knows how they are
used. The user is provided with the vision that only one
information source exists.
In this paper, the mobile agent-oriented approach to this
problem is discussed. Software agents can be used to
structure and integrate information. To illustrate it, we

present the Data Agents system [2] - a mobile agent-based
prototype for the retrieval of distributed structured
information in a scenario of several on line bookstores.
The proposed system is based on a group of agents that
try to find simultaneously the users’ interest products in
the several virtual places known by them, presenting the
results in an homogeneous way.
In the remainder of this paper, we provide background in
the area of agents (sections 2 and 3), introduce the
architecture and implementation project and discuss the
performance evaluation of the Data Agents system
(section 4). Finally, we conclude with a discussion of
future directions of this work (section 5).

2. RELATED WORK

Software agents have become very popular in the last six
or so years. They have been used successfully to filter
information, match people with similar interests and
automate repetitive behavior. More recently, the
capabilities of agents have been applied to electronic
commerce, promising a revolution in the way we conduct
transactions. One of these examples is the Andersen
Consulting’s Bargain Finder. This is a sophisticated
broker designed to aid in online shopping applications by
gathering information, from 9 websites, and delivering the
price and shipping terms of a certain good requested by
the user [11].
Like Bargain Finder and others systems based on
collaborative filtering technology [16], Firefly [12] helps
consumers find products. However, instead of filtering
products based on features, Firefly recommends products
via an automated “word of mouth” recommendation
mechanism called collaborative filtering. The system first
compares a shopper’s product ratings with those of other
shoppers. After identifying the shopper’s “nearest
neighbors” (i.e., users with similar taste), the system
recommends products that neighbors had rated highly but
which the shopper may not yet have rated, potentially
resulting in serendipitous finds. Essentially, Firefly uses
the opinions of like-minded people to offer
recommendations. The system is used to recommend
commodity products such as music and books, as well as
harder to characterize products such as web pages
restaurants.
 Others aspects of value added by agents in electronic
commerce is their usefulness in the dynamic process of

transacting a deal. There are several agent systems that
assist the customer in negotiating terms of a transaction :
AuctionBot [13], FishMarket [14], Kasbah [15], and Tete-
a-Tete [16].
AuctionBot is a general purpose Internet auction server at
the University of Michigan. AuctionBot users create new
auctions to sell products by choosing from a selection of
auction types and then specifying its parameters (e.g.,
clearing times, method for resolving bidding ties, the
number of sellers permitted, etc.). Buyers and sellers can
then bid according to the multilateral distributive
negotiation protocols of the created auction. In a typical
scenario, a seller would bid a reservation price after
creating the auction and let AuctionBot manage and
enforce buyer bidding according to the auction protocols
and parameters. What makes AuctionBot different from
most other auction sites, however, is that it provides an
application programmable interface (API) for users to
create their own software agents to autonomously
compete in the AuctionBot marketplace. However, as
with the Fishmarket Project, it is left to the users to
encode their own bidding strategies. Fishmarket is not
currently being used as a real-world system, but it has
hosted tournaments to compare opponents’ hand-crafted
bidding strategies along the lines of Axelrod’s prisoner’s
dilemma tournaments.
MIT Media Lab’s Kasbah is an on-line, multi-agent
consumer-to-consumer transactions system. A user
wanting to buy or sell a good creates an agent, gives it
some strategic direction, and sends it off into a centralized
agent marketplace. Kasbah agents pro-actively seek out
potential buyers or sellers and negotiate with them on
behalf of their owners. Each agent’s goal is to complete
an acceptable deal on behalf of its user subject to a set of
user-specified constraints, such as a initial asking (or
bidding) price, a lowest (or highest) acceptable price, a
date by which to complete the transaction and restrictions
on what parties to negotiate with and how to change the
price over time. Kasbah’s agents automate much of the
Merchant Brokering and Negotiation stages for both
buyers and sellers.
Tete-a-Tete provides a unique negotiation approach to
retail sales. Unlike most other online negotiation systems
which competitively negotiate over price, Tete-a-Tete’s
consumer-owned shopping agents and merchant-owned
sales agents cooperatively negotiate across multiple terms
of a transaction including warranties, delivery times,
service contracts, return policies, loan options, gift
services, and other merchant value-added services. Tete-
a-Tete considers product features and merchant features
equally throughout negotiations to help the shopper
simultaneously determine what to buy and who to buy
from. This integration of Product and Merchant Brokering
through integrative negotiations has the unique benefit
that constraints on product features can affect the decision
of who to buy from. For example, only a certain merchant
may be able to support a particular product configuration.
Likewise, constraints on merchant features can affect the
decision of what to buy. For example, if no merchant can

accommodate the overnight delivery of a specific product,
an alternate product which can be delivered overnight
may be determined to have a better overall value.
As we’ve seen, there are several agent based e-commerce
applications, however, we’ve not found any one which
applies the advantages mobility property. Because of this,
the paper purpose is to improve the performance of an e-
commerce prototype using mobile agent technology.

3. BACKGROUN MATERIAL

3.1 Mobile Agents

With the development of network technology, the whole
computing environment has changed profoundly and
become highly distributed, heterogeneous and dynamic.
Traditional client/server (C/S) model can no longer meet
the needs of complicated distributed computing because
of its inflexibility.
Mobile Software Agent (MSA) is a new distributed
computing model that can meet the needs of current
computing environment. In C/S model, computing entities
are static and passive, but in MSA model, they can
migrate and finish computing and are implemented
through agent migration and interaction. [9]
A Mobile Agent has the unique ability to transport itself
from one system in a network to another. This ability
allows a mobile agent to move to a system that contains
an object with which the agent wants to interact and then
to take advantage of being in the same host or network as
the object. After its submission, each mobile agent
proceeds autonomously and independently of the sending
client. When the agent reaches a server, it is delivered to
an agent execution environment. Then, if the agent
possesses necessary authentication credentials, its
executable parts are started. To accomplish its task, the
mobile agent can transport itself to another server, spawn
new agents, and interact with other agents. Upon
completion, the mobile agent delivers the results to the
sending client or to another server.[3,4]
In order for these agents to exist within a system or to
themselves form a system they require a framework for
implementation and execution. This is known as the agent
environment.

3.2 IBM Aglets: Java Mobile Agent Technology

The Aglets Software Developer Kit (ASDK) [10] was
developed at IBM Research Laboratory in Japan. It is a
framework for programming mobile network agents in
Java. From a technical point of view, the IBM’s mobile
agent called “aglet” (agile applet), is a lightweight Java
object that can move automosuly from one computer host
to another for execution, carrying along its program code
and state as well as the so far obtained data.
Unlike an applet’s short and boring period of execution,
an aglet can exist and execute tasks forever. One of the
main differences between an aglet and the simple mobile
code of Java applets, is the itinerary that is carried along

with the aglet. By having a travel plan, aglets are capable
of roaming the Internet collecting information from many
places. The itinerary can change dynamically giving the
aglet the sense of self-governing and the look of an
intelligent agent (that of course is in the hands of the
prrogrammer).
An aglet can be dispatched to any remote host that
supports the Java Virtual Machine. This requires from the
remote host to have preinstalled Tahiti, a tiny aglet server
program implemented in Java and providedby the Aglet
Framework. A running Tahiti server listens to the host’s
ports for incoming aglets, captures them, and provides
them with an aglet context (i.e., an agent execution
environment) in which they can run their code from the
state that it was halted before they were dispatched.
Within its context, an aglet can communicate with other
aglets, collect local information and when convenient halt
its execution and be dispatched to another host. An aglet
can also be cloned or disposed.

4. DATA AGENS SYSTEM

4.1 Project Architecture

E-commerce is becoming an attractive means of
conducting business. At present, numerous web sites offer
products for purchase over the Internet. However, none of
these sites is truly automated, as human intervention is
required for browsing, selecting and ordering products.
Moreover, such sites are essentially passive catalogs of
products and prices, with mechanisms for receiving orders
from buyers.
The agents for electronic commerce considered in this
context are those that somehow help the users to shop
over the Internet. This type of agent, called shopping
agent, may carry out several tasks, such as: to help the
user decide what product should be purchased; to make
suggestions based on its knowledge of its owner; to find
out new things, discounts and special prices; to find stores
that sell the desired product or service, among other
things.
In order to show the feasibility of the search process for
structured and distributed information through the mobile
agents technology, this paper proposes the development
of a multiagent and mobile system called “Data Agents”
in the context of several “on line” bookstores. The goal is
to accelerate the retrieval of distributed structured
information. This is achieved by improving the phase of
the process of data selection, in which the agents run
parallel among the servers related to them and at the end
returning with all the information requested by the user,
without the need to make a call to each one of the servers
separately. The information obtained is then presented in
a uniform and organized way. Using the information thus
presented by the system, it is much easier for the user to
choose a product with the most satisfactory
characteristics.

Among the possible functions described above, the Data
Agents Agent is intended to help find the stores that sell
the desired product and to list the prices of the products
found.
The operation of the prototype to achieve this objective is
the following:
• user selects the specific product and the desired
characteristics of that product (these characteristics will
be the restrictions for the search);
• the purchase agent searches for products with the
desired characteristics among products of that type;
• as a result of the search, Data Agents sends an e-mail or
shows a screen to the user with a list of products, their
respective prices and where they can be found.
The following architecture is proposed to enable the Data
Agents system to have the functionality mentioned above
and, in the future, to be applied to many products and
stores.

Figure 1 – Project Architecture

The system presented comprises the following
components: Interface Module, Control Module and
Purchase Agents. What follows is a detailed list of the
system components:
Interface Module: this is the component through which
the user contacts the system and places his order. This
module is also responsible for presenting the result
obtained by the group of agents to the user.
“Title”, “author” ,“price range” and "type of itinerary" are
the information that the user must provide to the Interface
Module so that it may request the Control Module to
create and dispatch the purchase agents according to the
restrictions imposed by the user.
There are three possibilities of choices for itineraries:

a. one agent for each server: According to the quantity of
servers registered in the system, one agent is created for
each server and dispatched to do its task. When each

agent arrives at its destiny, it does its search, send the
result as a message to Control Module and "dies".
b. only one agent that visits all the servers: It is created
only one agent that has in its travel plan the addresses of
all servers. It will go to all servers, one by one, do the
search, send the result as message to Control Module and
"dies" at last visited server.
c. one agent that goes through the servers until to find the
first occurrence: It is created only one agent that contains
in its travel plan the addresses of all servers. But it will
travel to next server only if doesn't find any book at
former server, that is, the agent travels until to find the
first occurrence that satisfies the order user.
As soon as the result manager (a component of the control
module) compiles all answers received, it sends these
answers to the interface module so that they are delivered
to the user: on the screen or via e-mail.
Control Module: This module is responsible for the
creation and release of purchase agents to begin the
search requested by the buyer. This module also
aggregates the results found by the different agents. There
is a control module for each type of product available in
the system, e.g. a control module for books and a different
one for CDs.
After receiving the user’s requirements from the interface
module, the Control Module creates the agents according
to such requirements and sends them to the addresses
available at a Storage Structure.
Storage Structure is a hash structure that contains the
addresses of the various stores associated with the system.
There is a storage structure for each type of product
researched by the system.
When the Control Module receives a request to send an
agent, the latter is created on the “aglet” layer according
to user's requirements and travels through the runtime
layer, which converts the agent into an array of bytes and
such array, on its turn, passes on to the ATP layer – Agent
Transfer Protocol, to be sent to its destination. This
protocol, then, builds a “bit stream” that contains both
general information, such as the system name, and its
identification, such as the “byte array” resulting from the
runtime layer.
Upon returning to the server with the information from its
search, each purchase agent sends its contents to the
Result Manager (Control Module), so that the Results
Manager may aggregate all answers obtained and send
them to the interface module.
Purchase Agents : Make contact with the stores by
accessing their databases, place the order and interpret the
answers generated, converting them into a format that is
understood by the control module. Before proceeding to
their destination, the agents are coded in bit stream: the
first segments are general information, such as the agent’s
identification, and the last segment is the byte array, the
agent per se: code and state. The goal of the agents is to
check the information found at their destination address,
selecting only the information considered relevant and
recommended according to the pre-determined rules.
Such information shall represent the basis of rules to be

used by the agent to make appropriate decisions in the
process of evaluation of the items found.
With this architecture, the extension of this system to deal
with new products and new stores is simple, although it is
necessary to build a control module for each new product.
So, several resources about the same type of information
could be organized in different groups and could be
answered by a specific member of the protptype
(bookshops, CD shops, newspapers). This fact would
allow a great and better vision to the user in order to him
can compare the prices of the several products of the web.

4.2 Project Implementation

This project was based on an experiment done to
investigated and test the suitability of using mobile agents
in a distributed and multiplataform environment to
produce a solution to a purchase order in a global market.
The scenario is based on a process very conventional and
common nowadays: the search of books in virtual
bookshops. The Data Agents system uses a parallel query
architecture in order to query pricing and availability of
user specified books. The system then combines the
filtered results as a summary to the user, finding the best
price and providing a unified interface for different
vendors, thus negating the need for the user to navigate to
different stores and deal with separate user interfaces.
The model architecture is characterized by the presence
and interaction of three types of agents:
Purchase agent – is the only mobile component of the
model; it travels through the net until arrive at the hosts
where does the wanted searches. Each purchase agent
when it is created, it receives all the necessary data to do
the search. After receiving it, this agent starts its trip
towards the first host of its address list. When it arrives at
each host defined in its itinerary, the purchase agent
executes the lista() method, that does the connection with
database locally and does the query. After receiving the
result, the purchase afent send a message to control
module that has as a argument a vector with all the data
from done query converted into a string.
Control agent – it is created by the interface agent. It is
responsible for the control and creation of the quantity of
necessary purchase agents in agreement with the
requeriments received from the interface agent. After its
creation, the control agent creates a data structure for each
purchase agent within the drivers (that will be used), the
host location (atp address), the users and the passwords.
Next, it is created a wait interface that indicates the
control module was created and it is waiting for the return
of purchase agents.
Interface Agent – it is the first agent that is created. It
presents a graphic interface where the user specifies the
data for the search and creates the control agent providing
to it the search parameters through the messages.

The interaction among the agents works through a series
of precoded messages that can or cannot have any
argument for the agent. For example: the message
“caminho” has as argument the vector that indicates the

places that the purchase agent has to visit (its itinerary),
while the message “iniciar” indicates that the purchase
agent has to start its trip to do the wanted searches.
So, with the agents organized this way, only the purchase
agent travels over the net – it goes to the host where it
does the search locally and afterwards it sends the results
obtained through the net. The whole process is started
with the creation of interface module that creates a
graphic interface where the user specifies his preferences
to the search. The Control Module when receives the user
requirements, it creates one or more agents, converts them
in an array of bytes. This array is passed to the ATP layer
(Agent Transfer Protocol) in order to it can be sent to its
destiny. This protocol builds, so, a bit stream that has
general information, such as system and identification
name and the array of bytes origined from runtime layer.
Each purchase agent when returns to source host, sends
all its contents to the control module component, Result
manager in order to him can aggregate all answers
obtained and send them to the interface module. The
interface module, per se, sends the result to the user by e-
mail or by screen.

4.3 Performance Evaluation

A simulation environment was developed in order to
implement and test the Data Agent system and establish a
basic structure of programming in a distributed
system.The operation system used it was Windows NT
4.0 and all the code lines were written in Java and ASDK
library. The tests were done at computers: Pentium 233,
64 Mb RAM, with the JDK 1.1.7A.
The proposed system acts in a simulated environment of
searching of books over the Internet. The main goal is to
enable a hogh degree of automation of Internet market. At
any time, a user can delegate tasks to a handler agent.
Such task is to look for good offers matching a certain
interest. Even if the user is off-line, he can be notofied
about the ordered query through e-mail.
The entity-relationship model used by this system and
available in each host is a simple model with four tables:
AUTORES (“authors”), GÊNEROS (“genders”),
LIVRO_AUTOR (“book_author”) and
LIVROS(“books”). The query is done, in fact, in the
tables: autores, livros and livro_autor. To test the
operation of JDBC calls, it was used the ACCESS and
MICROSOFT SQL SERVER 7.0 softwares.
The performance evaluation is based on execution time of
the purchases agents according to three types of itineraries
available in this system. It was evaluated the time that
these agents take to arrive the data sources, do the search
and send the results to the control module. The results
presented at the table 1 were represented in milliseconds.

Table 1. medium execution time of the purchases
agents

Quantity of
Bookshops Itinerary 1 Itinerary 2 Itinerary 3

5 988 1800 110

10 1044 1998 232

25 3558 5282 492

For a better comprehension of the table , we consider:
• itinerary 1 - one agent for each server;
• itinerary 2 - only one agent that visits all the servers;
• itinerary 3 - one agent that goes through the servers

until to find the first occurrence.

Figure 2 – Medium Execution Time of the Agents

The figure shows that the agent behavior change
considerably with the change of the type of itinerary. But
the difference of performance (considering the speed of
the agents) is more meaning between the itineraries 2 and
3. But considering the results quality of the search
realized, we have to accept that the results obtained by the
agents with the itineraries 1 and 2 are more complete. Of
course that the processing time is different depending on
the itinerary used. But, we can conclude that if we have
until tem server for the agents visit, the system works
well.
We also have to emphasize that with the itinerary 2, the
answer time grows quickly when the number of
bookshops is great. It happens because, in this case, the
mobile agents have their size added that becomes difficult
the migration. Concerning to itinerary 3, it is obvious that
this type of itinerary has the minor processing time,
because, in this case, the agent returns to the client
machine when it finds the first occurrence that satisfies
the user.
Finally, analyzing the executing time and the information
received quality, we can notice that the itinerary 1 gives a
better answer because we have several purchase agents
working together to attend the user interests.

 5 10 25

5. CONCLUSION

The figure shows that the agent behavior change
considerably with the change of the type of itinerary. But
the difference of performance (considering the speed of
the agents) is more meaning between the itineraries 2 and
3. But considering the results quality of the search
realized, we have to accept that the results obtained by the
agents with the itineraries 1 and 2 are more complete. Of
course that the processing time is different depending on
the itinerary used. But, we can conclude that if we have
until tem server for the agents visit, the system works
well.
We also have to emphasize that with the itinerary 2, the
answer time grows quickly when the number of
bookshops is great. It happens because, in this case, the
mobile agents have their size added that becomes difficult
the migration. Concerning to itinerary 3, it is obvious that
this type of itinerary has the minor processing time,
because, in this case, the agent returns to the client
machine when it finds the first occurrence that satisfies
the user.
Finally, analyzing the executing time and the information
received quality, we can notice that the itinerary 1 gives a
better answer because we have several purchase agents
working together to attend the user interests.

REFERENCES

[1] Papaioannou, T. On the Structuring of Distributed

Systems: The Argument for Mobility. Loughborough
University: Doctoral Thesis, February 2000.

[2] Martins, R.M.; Pirmez, L., Carmo, L.F.C..
Applications of Aglet Technology in Proc. of
ICSC’99, Hong Kong, 1999), 399-408.

[3] Chess, D.; et al. Itinerant Agents for Mobile
Computing. Journal IEEE Personal
Communications, Vol.2, Nº 5, October, 1993.

[4] General Magic Inc. Mobile Agents.
http://www.genmagic.com

[5] Lange, Danny B.; Oshima, Mitsuru. Programming
and Deploying Java Mobile Agents with Aglets.
(Massachusetts: Addison-Wesley, 1998).

[6] Bredin, J. Market-based mobile agent planning: a
thesis proposal. http://www.cs.darmouth.edu/
~jonathan/agents/proposal/index.html

[7] Klotkin, G.;Rosenberg, J.S. Negotiation and Task
Sharing among autonomous agents in cooperative
domains. Proc. of IJCAI´89. Detroit Michigan, 1989,
912-917.

[8] Klotkin, G.;Rosenberg, J.S. Mechanism for
Automated Negotiation in Stated Oriented Domains.
Journal of Artificial Intelligent Research, 1996, 163-
238.

[9] Chong, Chen; Jiwen, Huo; Kai, Bi; Zhongfan, Mai.
Mobile Software Agent Model and the Architecture
of JMSAS System. Proc. of MATA’99. Ottawa,
Canada, 1999, 37-52.

[10] Aglets Workbench, by IBM Japan Research Group.
http://aglets.trl.ibm.co.jp

[11] Andersen Consulting. BargainFinder. http://
www.url.http://bf.cstar.ac.com/bf

[12] Orlanta, Do; March, Eric; Rich, Jennifer; Wolff,
Tara. Intelligent Agents & The Internet: Effects On
Electronic Commerce and Marketing
http://asterix.ist.utl.upt/massdist/agcompras/referenci
as.htm

[13] Wurman, P. R., Wellman, M. P., Walsh, W.E. The
Michigan Internet AuctionBot: A Configurable
Auction Server for Human and Software Agents.
http://auction.eecs.umich.edu/papers.html.

[14] Rodríguez-Aguilar, J. A, Noriega, P., Sierra, C. e
Padget, J. A Java-based Electronic Auction House.
http://www.iiia.csic.es/~sierra/Publications.html.

[15] Chavez, A. , Maes, N. Kasbah: An Agent
Marketplace for Buying and Selling Goods, Proc. of
the First International Conference on the Practical
Application of Intelligent Agents and Multi-Agent
Technology, Londres, UK, 1996, 75-90.

[16] Moukas, A, Guttman, R., Maes, P. Agent-mediated
Electronic Commerce: An MIT Media Laboratory
Perspective.http://ecommerce.media.mit.edu/papers/
ker98.pdf

.

