

Databases and Information Retrieval:
Taking advantage of Mobile Agent Technology

Rosane Maria Martins, Luci Pirmez and Luiz Fernando Rust da Costa Carmo
NCE/UFRJ - Núcleo de Computação Eletrônica

Universidade Federal do Rio de Janeiro
Tel.: +55 21 2598-3322 - Caixa Postal: 2324 - Rio de Janeiro RJ Brasil

rosanemartins@uol.com.br, {luci,rust}@nce.ufrj.br

Abstract. Internet has evolved from an information
space to a market space with thousands, potentially
millions, of electronic storefronts, auctions and other
commercial services. This creates great opportunities, but
is not without problems.. The information overload is an
obstacle to the practical use of potentially useful
information on the Web. The use of mobile agents in this
kind of applications represents a novel approach and
potentially solves most of the problems that exist in
centralized client-server solutions, because they are
programs with a persistent identity which moves around a
network and can communicate with this environment and
other agents. We present a possible solution for this
problem: the Data Agent system - a mobile agent
application for the retrieval of distributed structured
information in a scenario of several on-line bookstores.
This system was developed for Web-based distributed
access to database systems based on Java-based mobile
agents. This paper describes the project architecture and
its implementation that is based on IBM´s Aglets
Workbench. It also emphasizes the obtained results with
the several experiments realized, concluding that the
implementation of the system shows that its performance
is comparable to, and in some case outperforms the
current approach.

Keywords: Mobile Agents, Distributed Databases,
Aglets.

1 Introduction

Today, the number of available information sources is
growing rapidly. Finding and combining the relevant
information is becoming a critical task. There is a need for
facilities that perform these integrating tasks and thus
overcome problems such as distribution and
heterogeneity. We can access incredible amount of
information at wide-area networks, where data are stored
at heterogeneous sources and the accessibility of
individual sources varies by large degree. Consequently
one of the main point of today’s research is finding
effective ways of sorting and accessing these distributed

sources. Nowadays, the most model for distributed
sources is the client-server model. This paradigm divides
the distributed application code into the server part
providing fixed services at the server machine and the
client part remotely requesting them. However, this
process may be extremely complex and it can be even
worse if the client and server sites belong to different
administration domains.

In this paper, the mobile-agent approach to this problem is
discussed. Our approach is based on the idea of using
mobile agents to integrate distributed sources into a global
system to provide database connectivity, processing and
communication, and consequently eliminate the overheads
of the existing methodologies. The driving force
motivating the use of mobile agents is twofold. First,
mobile agents provide an efficient, flexible and
asynchronous method for searchinf for information or
services in rapidly evolving networks: mobile agents are
launched into the unstructured network and roam around
to gather information. Second, mobile agents support
intermittent connectivity, slow networks, and lightweight
devices. These properties make the use of mobile agents
very attractive[19]. To illustrate it, we present the Data
Agents System [2] – a mobile agent-based prototype for
the retrieval of distributed structured information in a
scenario of several on-line bookstores. The proposed
system is based on a group of agents that try to find
simultaneously the users’ interest products in the several
virtual places known by them, presenting the results in an
homogeneous way.

In the remainder of this paper, we provide background in
the area of agents (sections 2 and 3), introduce the
architecture and implementation project and discuss the
performance evaluation of the Data Agents system
(section 4). Finally, we conclude with a discussion of
future directions of this work (section 5).

2 Related Work

This work is inspired by current research in many fields.
We draw from other agent projects using functionality

deas, various topics in mobility and ideas from
distributed-systems research.

Software agents have become very popular in the last six
or so years. They have been used successfully to filter
information, match people with similar interests and
automate repetitive behavior. More recently, the
capabilities of agents have been applied to electronic
commerce, promising a revolution in the way we conduct
transactions. One of these examples is the Andersen
Consulting’s Bargain Finder. This is an automatic search
tool that helps customers to find the best prices on CDs
[11]. Customers may specify what they are looking for
and BargainFinder searches nine diferent retailers to find
the best price. A complete summary is returned where the
customer can see the prices for all retailers and simply
pick an option to be sent directly to the corresponding
retailer. This system simply tries to ease the burden for
customers to find the best price without manually going
around to a number of retailers and compare prices.

Like Bargain Finder and others systems based on
collaborative filtering technology [16], Firefly [12] helps
consumers find products. However, instead of filtering
products based on features, Firefly recommends products
via an automated “word of mouth” recommendation
mechanism called collaborative filtering. The system first
compares a shopper’s product ratings with those of other
shoppers. After identifying the shopper’s “nearest
neighbors” (i.e., users with similar taste), the system
recommends products that neighbors had rated highly but
which the shopper may not yet have rated, potentially
resulting in serendipitous finds. Essentially, Firefly uses
the opinions of like-minded people to offer
recommendations. The system is used to recommend
commodity products such as music and books, as well as
harder to characterize products such as restaurants’ web
pages.

As we’ve seen, there are several agent based applications
that help the user to find the wanted information on the
web, but however, we’ve found a few applications
[17],[18] which use mobile agents for distributed database
access. Because of this, the main purpose of this paper is
to look at how the mobile agent paradigm can improve
some distributed database and information retrieval
related problems, such as the performance of an e-
commerce prototype.

3 Background Material

3.1 Mobile Agents

With the development of network technology, the whole
computing environment has changed profoundly and
become highly distributed, heterogeneous and dynamic.
Traditional client/server (C/S) model cannot longer meet
the needs of complicated distributed computing because of
its inflexibility.

Mobile Software Agent (MSA) is a new distributed
computing model that can meet the needs of current

computing environment. In C/S model, computing entities
are static and passive, but in MSA model, they can
migrate and finish computing and are implemented
through agent migration and interaction. [9]

Mobile Agents are processes dispatched from a source
computer to accomplish a specified task. Each mobile
agent is a computation along with its own data and
execution state. In this way, the mobile agent paradigm
extends the RPC communication mechanism according to
which a message sent by a client is just a procedure call.
After its submission, the mobile agent proceeds
automously and independently delivered to an agent
execution environment. Then, if the agent possesses
necessary authentication credentials, its executable parts
are started. To accomplish its tasks, the mobile agent can
transport itself to another server, spawn new agents, and
interact with other agents. Upon completion,. The mobile
agent delivers the results to the sending client or to
another server.

To run mobile agents, some facilities are required at the
hosts. A platform that can create, execute, transfer and
terminate agents is called an agent system. The agent
system is responsible for identifying incoming agents and
providing (and protecting) local sources. The agent system
ensures communication among agents (usually via
messages) either locally or remotely.

3.2 IBM Aglets: Java Mobile Agent Technology

The Aglets Software Developer Kit (ASDK) [10] was
developed at IBM Research Laboratory in Japan. It is a
framework for programming mobile network agents in
Java. From a technical point of view, the IBM’s mobile
agent called “aglet” (agile applet), is a lightweight Java
object that can move automosuly from one computer host
to another for execution, carrying along its program code
and state as well as the so far obtained data.

Unlike an applet’s short and boring period of execution,
an aglet can exist and execute tasks forever. One of the
main differences between an aglet and the simple mobile
code of Java applets, is the itinerary that is carried along
with the aglet. By having a travel plan, aglets are capable
of roaming the Internet collecting information from many
places. The itinerary can change dynamically giving the
aglet the sense of self-governing and the look of an
intelligent agent (that of course is in the hands of the
prrogrammer).

An aglet can be dispatched to any remote host that
supports the Java Virtual Machine. This requires from the
remote host to have preinstalled Tahiti, a tiny aglet server
program implemented in Java and providedby the Aglet
Framework. A running Tahiti server listens to the host’s
ports for incoming aglets, captures them, and provides
them with an aglet context (i.e., an agent execution
environment) in which they can run their code from the
state that it was halted before they were dispatched.
Within its context, an aglet can communicate with other
aglets, collect local information and when convenient halt

its execution and be dispatched to another host. An aglet
can also be cloned or disposed.

4 DATA AGENTS SYSTEM

4.1 Project Architecture

E-commerce is becoming an attractive means of
conducting business. At present, numerous web sites offer
products for purchase over the Internet. However, none of
these sites is truly automated, as human intervention is
required for browsing, selecting and ordering products.
Moreover, such sites are essentially passive catalogs of
products and prices, with mechanisms for receiving orders
from buyers.

The agents for electronic commerce considered in this
context are those that somehow help the users to shop
over the Internet. This type of agent, called shopping
agent, may carry out several tasks, such as: to help the
user decide what product should be purchased; to make
suggestions based on its knowledge of its owner; to find
out new things, discounts and special prices; to find stores
that sell the desired product or service, among other
things.

In order to show the feasibility of the search process for
structured and distributed information through the mobile
agents technology, this paper proposes the development of
a multiagent and mobile system called “Data Agents” in
the context of several “on line” bookstores. The goal is to
accelerate the retrieval of distributed structured
information. This is achieved by improving the phase of
the process of data selection, in which the agents run
parallel among the servers related to them and at the end
returning with all the information requested by the user,
without the need to make a call to each one of the servers
separately. The information obtained is then presented in a
uniform and organized way. Using the information thus
presented by the system, it is much easier for the user to
choose a product with the most satisfactory
characteristics.

Among the possible functions described above, the Data
Agents Agent is intended to help find the stores that sell
the desired product and to list the prices of the products
found.

The operation of the prototype to achieve this objective is
the following:

• user selects the specific product and the desired
characteristics of that product (these characteristics will be
the restrictions for the search);

• the purchase agent searches for products with the
desired characteristics among products of that type;

• as a result of the search, Data Agents sends an e-mail or
shows a screen to the user with a list of products, their
respective prices and where they can be found.

The following architecture is proposed to enable the Data
Agents system to have the functionality mentioned above

and, in the future, to be applied to many products and
stores.

Figure 1 – Project Architecture

The system presented comprises the following
components: Interface Module, Control Module and
Purchase Agents. What follows is a detailed list of the
system components:

Interface Module: this is the component through which
the user contacts the system and places his order. This
module is also responsible for presenting the result
obtained by the group of agents to the user.

“Title”, “author” ,“price range” and "type of itinerary" are
the information that the user must provide to the Interface
Module so that it may request the Control Module to
create and dispatch the purchase agents according to the
restrictions imposed by the user.

There are three possibilities of choices for itineraries:

a. one agent for each server: According to the quantity of
servers registered in the system, one agent is created for
each server and dispatched to do its task. When each agent
arrives at its destiny, it does its search, send the result as a
message to Control Module and "dies".

b. only one agent that visits all the servers: It is created
only one agent that has in its travel plan the addresses of
all servers. It will go to all servers, one by one, do the
search, send the result as message to Control Module and
"dies" at last visited server.

c. one agent that goes through the servers until to find the
first occurrence: It is created only one agent that contains
in its travel plan the addresses of all servers. But it will
travel to next server only if doesn't find any book at
former server, that is, the agent travels until to find the
first occurrence that satisfies the order user.

As soon as the result manager (a component of the control
module) compiles all answers received, it sends these

answers to the interface module so that they are delivered
to the user: on the screen or via e-mail.

Control Module: This module is responsible for the
creation and release of purchase agents to begin the search
requested by the buyer. This module also aggregates the
results found by the different agents. There is a control
module for each type of product available in the system,
e.g. a control module for books and a different one for
CDs.

After receiving the user’s requirements from the interface
module, the Control Module creates the agents according
to such requirements and sends them to the addresses
available at a Storage Structure.

Storage Structure is a hash structure that contains the
addresses of the various stores associated with the system.
There is a storage structure for each type of product
researched by the system.

When the Control Module receives a request to send an
agent, the latter is created on the “aglet” layer according
to user's requirements and travels through the runtime
layer, which converts the agent into an array of bytes and
such array, on its turn, passes on to the ATP layer – Agent
Transfer Protocol, to be sent to its destination. This
protocol, then, builds a “bit stream” that contains both
general information, such as the system name, and its
identification, such as the “byte array” resulting from the
runtime layer.

Upon returning to the server with the information from its
search, each purchase agent sends its contents to the
Result Manager (Control Module), so that the Results
Manager may aggregate all answers obtained and send
them to the interface module.

Purchase Agents : Make contact with the stores by
accessing their databases, place the order and interpret the
answers generated, converting them into a format that is
understood by the control module. Before proceeding to
their destination, the agents are coded in bit stream: the
first segments are general information, such as the agent’s
identification, and the last segment is the byte array, the
agent per se: code and state. The goal of the agents is to
check the information found at their destination address,
selecting only the information considered relevant and
recommended according to the pre-determined rules. Such
information shall represent the basis of rules to be used by
the agent to make appropriate decisions in the process of
evaluation of the items found.

With this architecture, the extension of this system to deal
with new products and new stores is simple, although it is
necessary to build a control module for each new product.

So, several resources about the same type of information
could be organized in different groups and could be
answered by a specific member of the protptype
(bookshops, CD shops, newspapers). This fact would
allow a great and better vision to the user in order to him
can compare the prices of the several products of the web.

4.2 Project Implementation

This project was based on an experiment done to
investigated and test the suitability of using mobile agents
in a distributed and multiplataform environment to
produce a solution to a purchase order in a global market.
The scenario is based on a process very conventional and
common nowadays: the search of books in virtual
bookshops. The Data Agents system uses a parallel query
architecture in order to query pricing and availability of
user specified books. The system then combines the
filtered results as a summary to the user, finding the best
price and providing a unified interface for different
vendors, thus negating the need for the user to navigate to
different stores and deal with separate user interfaces.

The model architecture is characterized by the presence
and interaction of three types of agents:

Purchase agent – is the only mobile component of the
model; it travels through the net until arrive at the hosts
where does the wanted searches. Each purchase agent
when it is created, it receives all the necessary data to do
the search. After receiving it, this agent starts its trip
towards the first host of its address list. When it arrives at
each host defined in its itinerary, the purchase agent
executes the lista() method, that does the connection with
database locally and does the query. After receiving the
result, the purchase afent send a message to control
module that has as a argument a vector with all the data
from done query converted into a string.

Control agent –it is created by the interface agent. It is
responsible for the control and creation of the quantity of
necessary purchase agents in agreement with the
requeriments received from the interface agent. After its
creation, the control agent creates a data structure for each
purchase agent within the drivers (that will be used), the
host location (atp address), the users and the passwords.
Next, it is created a wait interface that indicates the
control module was created and it is waiting for the return
of purchase agents.

Interface Agent – it is the first agent that is created. It
presents a graphic interface where the user specifies the
data for the search and creates the control agent providing
to it the search parameters through the messages.

The interaction among the agents works through a series
of precoded messages that can or cannot have any
argument for the agent. For example: the message
“caminho” has as argument the vector that indicates the
places that the purchase agent has to visit (its itinerary),
while the message “iniciar” indicates that the purchase
agent has to start its trip to do the wanted searches.

So, with the agents organized this way, only the purchase
agent travels over the net – it goes to the host where it
does the search locally and afterwards it sends the results
obtained through the net. The whole process is started
with the creation of interface module that creates a graphic
interface where the user specifies his preferences to the
search. The Control Module when receives the user
requirements, it creates one or more agents, converts them
in an array of bytes. This array is passed to the ATP layer

(Agent Transfer Protocol) in order to it can be sent to its
destiny. This protocol builds, so, a bit stream that has
general information, such as system and identification
name and the array of bytes origined from runtime layer.

Each purchase agent when returns to source host, sends all
its contents to the control module component, Result
manager in order to him can aggregate all answers
obtained and send them to the interface module. The
interface module, per se, sends the result to the user by e-
mail or by screen.

4.3 Performance Evaluation

A simulation environment was developed in order to
implement and test the Data Agent system and establish a
basic structure of programming in a distributed
system.The operation system used it was Windows NT 4.0
and all the code lines were written in Java and ASDK
library. The tests were done at computers: Pentium 233,
64 Mb RAM, with the JDK 1.1.7A.

The proposed system acts in a simulated environment of
searching of books over the Internet. The main goal is to
enable a hogh degree of automation of Internet market. At
any time, a user can delegate tasks to a handler agent.
Such task is to look for good offers matching a certain
interest. Even if the user is off-line, he can be notofied
about the ordered query through e-mail.

The entity-relationship model used by this system and
available in each host is a simple model with four tables:
AUTORES (“authors”), GÊNEROS (“genders”),
LIVRO_AUTOR (“book_author”) and LIVROS
(“books”). The query is done, in fact, in the tables:
autores, livros and livro_autor. To test the operation of
JDBC calls, it was used the ACCESS and MICROSOFT
SQL SERVER 7.0 softwares.

The purchase agents can be launched to query multiple
databases in parallel. The agents are lauched to different
hosts on the web, cooperate and communicate with each
other to perform complicated tasks efficiently. By using
the these agents to encapsulate all interactions between the
client and the server machine, the client becomes light and
portable. This is possible because the only responsibility
of the user machine is to specify the URL address of the
database server, the query to be performed and the
itinerary. The rest, such as the loading and inicialization of
JDBC drivers, is the responsibility of purchase agents.
The effect on performance is quite significant.

The performance evaluation is based on execution time of
the purchases agents according to three types of itineraries
available in this system. It was evaluated the time that
these agents take to arrive the data sources, do the search
and send the results to the control module. The results
presented at the table 1 were represented in milliseconds.

Table 1. medium execution time of the purchases
agents

Quantity
of

Bookshops
Itinerary 1 Itinerary 2 Itinerary 3

5 988 1800 110

10 1044 1998 232

25 3558 5282 492

For a better comprehension of the table , we consider:

• itinerary 1 - one agent for each server;

• itinerary 2 - only one agent that visits all the servers;

• itinerary 3 - one agent that goes through the servers
until to find the first occurrence.

The table shows that the agent behavior change
considerably with the change of the type of itinerary. But
the difference of performance (considering the speed of
the agents) is more meaning between the itineraries 2 and
3. But considering the results quality of the search
realized, we have to accept that the results obtained by the
agents with the itineraries 1 and 2 are more complete. Of
course that the processing time is different depending on
the itinerary used. But, we can conclude that if we have
until tem server for the agents visit, the system works
well.

We also have to emphasize that with the itinerary 2, the
answer time grows quickly when the number of
bookshops is great. It happens because, in this case, the
mobile agents have their size added that becomes difficult
the migration. Concerning to itinerary 3, it is obvious that
this type of itinerary has the minor processing time,
because, in this case, the agent returns to the client
machine when it finds the first occurrence that satisfies the
user.

Finally, analyzing the executing time and the information
received quality, we can notice that the itinerary 1 gives a
better answer because we have several purchase agents
working together to attend the user interests.

5 Discussions and Future Work

In this paper, we have introduced a new approach for
developing client/server applications on the Web using
Java mobile agents. The Data Agents system implements
an application to investigate and test the convenience of
using the mobile agent technology at a distributed
environment. This application is able of offering
information services where the agents under user’s thumb,
liberating him of doing routine tasks of searching

information at common bookshops, that are, in general,
limited at the space and time.

The proposed system supports a new way for web-based
database access which is shown to be (a) extremely
flexible, it was very easily adapted to work under the
client/agent/server computational paradigm; (b) more
scalable, extending it to support multidatabase systems
was easy while it not only maintained but also increaded
its performance benefits.

The implementation of the system also showed that it
outperformed the current approach. The results obtained
were considered acceptable, due to the information
filtering be executed on the server where the resources are
located. This circumstance leads to a significant reduced
network loading. The project demonstrated its
effectiveness over a specif application context. We can
say that the mobile agent technology offers news
approaches in distributed computing especially for
efficient exploitation of distributed data sources.

Currently there are many restrictions facing the large
scale use of mobility in software. There is little incentive
for host sites to accept arbitrary mobile agents. There is no
mechanism to give agents an indication of their
computational impact on the environment, so agents have
little guidance on how to act responsibly. For such a
mechanism to exist, there needs to be a low-overhead
method of coordination of agents in the network. We
believe that markets are the proper tools to enable an open
mobile-agent system. They enforce an additional level of
security and give incentive for agents to automously
balance the computacional load across the network.
Allowing the currency used to buy computational
resources to be exchanged for legal tender allows system
administrators to temporarily expands their domain by
importing resources as well capitalize on idle resources by
exporting them. So, researches about a risks and costs
compensation through a system market establishment can
be considered as one of our future works. It could be
implemented a market system where mobile agents buy
computational resources. This mechanism could act to
control mobile agents’ resource consumption due to the
finite currency supply available to any agent.
Additionally, agents could sell their own services to user,
hosts, and other agents. More details in [6].

Although the negotiation process doesn’t have been
considered in this work, it is an excellent candidate for a
future investigation in this project. For example, the
negotiation process with Games Theory could be
used.[7,8]

Other suggestion it would be the implementation of
an intelligent module that permits the Data Agents system,
besides of the conventional search, makes suggestions to
the user. The development of this intelligent module based
on inference mechanism based o rules and the the
possibility of existence of more than one kind of product
to be investigated are tasks that would be hopeful in the
evolution of this work.

In any case, the experimentations convinced us that
agents can be very useful to solve everyday problems

(file-transfer, batch queries). It’s up to us to write behavior
that are going to solve more challenging problems.

References

[1] Papaioannou, T. On the Structuring of Distributed
Systems: The Argument for Mobility.
Loughborough University: Doctoral Thesis, February
2000.

[2] Martins, R.M.; Pirmez, L., Carmo, L.F.C..
Applications of Aglet Technology in Proceedings of
ICSC’99 (Hong Kong, December 1999), Springer-
Verlag, 399-408.

[3] Chess, D.; et al. Itinerant Agents for Mobile
Computing. Journal IEEE Personal Communications,
Vol.2, Nº 5, October, 1993.

[4] General Magic Inc. Mobile Agents. http://www.
genmagic.com

[5] Lange, Danny B.; Oshima, Mitsuru. Programming
and Deploying Java Mobile Agents with Aglets.
Massachusetts: Addison-Wesley, 1998.

[6] Bredin, J. Market-based mobile agent planning: a
thesis proposal. http://www.cs.darmouth.edu
/~jonathan/agents/proposal/index.html

[7] Klotkin, G.;Rosenberg, J.S. Negotiation and Task
Sharing among autonomous agents in cooperative
domains. In: Proceedings of IJCAI´89. Detroit
Michigan, pp. 912-917, 1989.

[8] Klotkin, G.;Rosenberg, J.S. Mechanism for
Automated Negotiation in Stated Oriented
Domains. Journal of Artificial Intelligent Research,
pp. 163-238, 1996.

[9] Chong, Chen; Jiwen, Huo; Kai, Bi; Zhongfan, Mai.
Mobile Software Agent Model and the
Architecture of JMSAS System. In: Proceedings of
MATA’99. Ottawa, Canada, pp.37-52.

[10] Aglets Workbench, by IBM Japan Research Group.
http://aglets.trl.ibm.co.jp

[11] Andersen Consulting. BargainFinder. http://
www.url.http://bf.cstar.ac.com/bf

[12] Orlanta, Do; March, Eric; Rich, Jennifer; Wolff, Tara.
Intelligent Agents & The Internet: Effects On
Electronic Commerce and Marketing http://
asterix.ist.utl.upt/massdist/agcompras/referencias.htm

[13] Wurman, P. R., Wellman, M. P., Walsh, W.E. The
Michigan Internet AuctionBot: A Configurable
Auction Server for Human and Software Agents.
http://auction.eecs.umich.edu/papers.html.

[14] Rodríguez-Aguilar, J. A, Noriega, P., Sierra, C. e
Padget, J. A Java-based Electronic Auction House.
http://www.iiia.csic.es/~sierra/Publications.html.

[15] Chavez, A. , Maes, N. Kasbah: An Agent
Marketplace for Buying and Selling Goods,
Proceedings of the First International Conference on
the Practical Application of Intelligent Agents and
Multi-Agent Technology, Londres, UK, 75-90. 1996.

[16] Moukas, A, Guttman, R., Maes, P. Agent-mediated
Electronic Commerce: An MIT Media Laboratory
Perspective. http://ecommerce.media.mit.edu/papers/
ker98.pdf

[17] Mattern, F.; Fünfrocken,S. Mobile Agents as an
Architectural Concept for Internet-based
Distributed Applications. http://informatik.tu-
darmstadt.de/VS/Publikationen/papers/kivs99-html/
kivs99.html

[18] Vlach, R. The Porter Mobile Database Agent.
http://aglaja.ms.mff.cuni.cz/ ~vlach/ PorterDemo.html

[19] Pittura, E.; Samaras, G. Data Management for
Mobile Computing. Kluwer Academic Publisher,
1997.

