
 1

An Adaptive Distributed System Based on Conditional Dependencies

Luci Pirmez
Luiz F. Rust C. Carmo

Reinaldo de B. Correia
Renata F. Corrêa, Roberta L. Gomes

Luiz F. Huet de Bacellar

{rust, luci}@nce.ufrj.br

{refalcao,reinaldo}@posgrad.nce.ufrj.br
beta@laas.fr

Bacelllf@utrc.utc.com

Núcleo de Computação Eletrônica
Universidade Federal do Rio de Janeiro

United Technologies
Research Center

P.O.Box 2324, 20001-970
Rio de Janeiro – RJ

Brazil

411 Silver Lane
East Hartford, CT, 06108

USA

Abstract

Distributed programming is applicable in a wide range
of domains such as control systems. These systems are
subject to mutable environments and must also provide
a time varying adaptive set of functionalities. An
adaptive system is defined by means of two main
features: (i) an approach to specify the correspondence
between objects and resources and (ii) the related
mechanisms to assure dynamically the right set of
objects running. The conditional dependency concept
has proven to be an efficient way to specify this kind of
correspondence between resources and objects for
adaptive systems in the context of multimedia
distributed processing (ServiMidia Project [1]). This
paper presents a framework for designing general
purpose adaptive systems anchored on the concept of
conditional dependencies. As the use of such approach
may lead to inconsistent system behaviour when
specifying very large systems, we show that it is easy to
design verification tools based on the same framework
mechanisms.

1: Introduction

A modern computing environment is characterized

by a high degree of mobility, heterogeneity, and
interactions among computing devices. The key
requirement for systems in such an environment is the
flexibility to adapt to drastic changes that may occur.
These changes profoundly impact the performance of
user applications.

A distributed system is a good choice to address
these issues. Distributed applications are sets of objects
working in a cooperative fashion. Any one of the

machines in the environment can host objects. In this
way, these applications are able to utilize the available
resources more efficiently. In addition, performance is
higher since parallel processing is the main goal.
Objects are also considered components that have
specialized functions. The execution coordination of
objects is achieved by exchanging messages so that
applications are capable of guaranteeing the correctness
of its execution.

Although previous research exists, distributed
systems do not offer enough support for managing,
adapting, and reacting to these changes. For a safe
distributed application, timely and dependable services it
should be maintained despite any component failures or
environmental changes. Our goal is to present an
adaptive approach that will make it possible for
applications to not only effectively deal with the
changing environment in which they are run but also be
able to fulfil l their varied functionalities.

This adaptive approach may interrupt or start an
object depending on the functionality that the application
is supposed to accomplish. Further, objects may be
interrupted due to a lack of resources in one machine and
resume on another in which resources are available.

Failure recoveries in dependable systems are
essentially a process of adaptation [2] and many adaptive
mechanisms have already been proposed. Some of these
mechanisms implement the adaptation process inside the
operating systems [3, 4], others in the middleware [5, 6].
There are also others that build general models to
facilitate the deployment of the adaptation process [7].
Examples of these approaches are the concurrency
control of database transactions [8], real-time parallel
systems [9, 10], and high-speed communication protocols
[11]. Our approach differs in that it proposes an original
and simplified way of specifying adaptability

 2

requirements with conditional dependencies, which
makes it possible to verify the consistency of the
specification by employing the same mechanisms
necessary for its processing.

This paper introduces in Section 2 the concept of
conditional dependencies and how to use it to specify
distributed adaptive applications. Section 3 discusses
architectural issues to create adaptive systems according
to the proposed strategy. Section 4 points out several
inconsistencies that may occur during the specification
process. Section 5 provides some directives to verify the
consistency of a specification. Section 6 finally reports
some of the conclusions of this paper.

2: Specification of an Adaptive Application

The process of adaptation is defined as the

substitution of a group of running objects (GOa) for a
different group of objects (GOb). In a more general sense,
the process of adaptation can also be defined as the
replacement of an object by another one or by a group of
objects. Moreover, an object may substitute a group of
objects.

Basically, an adaptation strategy allows distributed
applications to specify different states. Application states
are related to specific sets of actions that must be taken
during a period of time. An application state is
established by stopping or running objects as shown in
Figure 1.

Application

Oa

State 1

Oa Running
Ob Running
Oc Stopped
Od Stopped
Oe Stopped

Ob
Oc

Od Oe

State 2

Oa Stopped
Ob Running
Oc Running
Od Stopped
Oe Running

Figure 1 - Application states

To coordinate the execution of a distributed

application, it is necessary to determine the spatial
positioning of the objects and the establishment of
temporal relationships among the objects. Spatial
positioning allows application developers to organize the
physical positioning of the objects in the environment
according to resources availability or/and optimisation
requirements such as network bandwidth and delay.
Temporal relationships are specified by defining initial
instants and durations of the involved objects. The
temporal relationship among the objects must be
associated to a synchronization model, which governs
how these objects are linked to each other. Schemes
based solely on timelines present a series of limitations.

In other words, it is very difficult to structure the
application’s execution and establish relationships
among objects of variable or unknown duration. To
overcome these limitations, we propose a specification
approach that combines: (1) a model of temporal
synchronization based on timelines; and (2) a model of
causal synchronization based on conditional
relationships among the involved objects associated to
the temporal model above.

2.1: Temporal requirements

An application consists of different types of objects

that are activated/deactivated at different instants of time
and durations. The beginning instants and durations of
these objects’ activities are specified by either an
inflexible (hard) or flexible time specification. In the case
of an inflexible specification, these instants and durations
are fixed, whereas, in a flexible specification, these
instants vary within a range of values.

A flexible temporal specification is obtained through
the establishment of margins of tolerance for the
beginning of an object’ s execution, i.e., when temporal
intervals are defined, objects may be started at any
instant within this interval. The timing aspects are
expressed via a margin of tolerance (range), the initial
instant, and the duration.

2.2: Causal requirements

The key to deploying distributed applications that

are able to adapt themselves when they are confronted
with changes in the environment is to provide for these
applications the means of changing their states. These
adapted states allow preserving the set of functionalities,
which the application was designed to perform. To deal
with this problem, the application developer must specify
the correct temporal and logical relationships among the
application’s objects so that a coherent adaptation can be
accomplished.

In using the concept of causal synchronization, the
application developer can specifies conditional
dependencies among the objects to construct a net of
causality that determines the application be correctly
executed.

The specification strategy for adaptive applications
is based on the link concept. The use of links is quite
common and is fundamental in the hypermedia and
hypertext areas. In these areas, the links are defined as
pointers inside a hypermedia or hypertext document. The
pointers point to locations inside the same document or
inside other documents. These locations are called nodes.

 3

In this way, the links create a mesh of connected nodes
so that it is possible for the users to navigate throughout
the interlinked documents.

The MHEG-5 standard [12] defines a Link object,
which consists of a LinkCondition and a LinkEffect. The
LinkEffect, which is a list of elementary actions, is
executed when the LinkCondition becomes true. In
MHEG-5, a LinkCondition is always fired when an event
occurs. An event always emanates from only one object.
In this paper, the definition of link concept, while based
on the MHEG-5 standard, is broadened to include the
ability to express adaptability requirements. A Link
object is made up of a LinkSource and a LinkTarget. A
LinkSource consists of a list of SourceConditions
associated to different source objects. A LinkTarget
related to only one target object is formed by a
TargetAction and a TargetDexpr (dependency
expression). TargetDexpr interrelates SourceConditions
to describe the semantic requirements that must be
followed during the application processing. When a link
is fired, it executes its TargetDexpr. It is then verified,
and when it becomes true, the TargetAction is executed.
Figure 2 depicts a Link object whose LinkSource is
composed of N1, N2 and N3 conditions. This Link object
has also a LinkTarget that, in turn, is formed by a
TargetDexpr and the TargetAction N4.

To specify these conditional dependencies among
objects, two link object types are defined: startLink and
stopLink. They are related to the actions of starting and
stopping a unique object execution.

Two states associated to SourceConditions are
defined as running either stopped. Specification of a
SourceCondition is defined according to source:state
syntax. For example, when object x is running, its
SourceCondition is specified by the x:running
expression. In the same way, a link’s TargetAction, is
specified by the target:action expression. In the case of a
link’s startlink for object y, its TargetAction must be
specified by the y:start.

The specification of TargetDexpr is done via a
Boolean expression that combines the SourceConditions
within this Link object. For example, the x:running and
y:stopped dependency expressions can be specified to test
if object x is running and if object y is stopped. Finally,
the specification of a link is defined according to the
following syntax: link-id = TargetAction ←←←←
TargetDexpr, in which link-id is the Link identification.
This nomenclature symbolizes that Link-id possesses a
dependency expression that must be satisfied so that the
TargetAction can be executed.

N1

TargetAction

Source
Conditions

N2 N4
Target
Dexpr

LinkSource
LinkTarget

N3

Figure 2 - A Link object representation

2.3: Application Example

A video stream transmitted over the Internet

perfectly il lustrates how the adaptive mechanism works.
The original video is coded with Cx coder and stored in a
video server. This compressed video stream must be
decoded by running Dx object on the client machine,
which continues until the end of the presentation if
resource availability remains constant. Unfortunately,
the amount of resources in the network and in the client
machine varies over time due to concurrent processes
that share these same resources. The situation described
above in which the Dx object decodes the compressed
stream minimizes the usage of network bandwidth.
However Dx object consumes a huge amount of resources
(CPU cycles and memory) of the client machine. If a
resource shortage occurs due to other concurrent
processes that are running on the client machine during
this video presentation, an adaptive mechanism must be
triggered to cope with this resource shortage. The main
idea is to substitute object Dx by two alternative Dp and
Df objects. The Dp object, which partially decodes the
video stream from the server, is run on an adjacent
machine (in the same subnet) while, as the final step, the
Df object, which decodes the stream from the Dp object,
is run on the client machine. In this way, resources are
freed in the client machine since object Df is a decoder
that consumes fewer resources. In order to comply with
this adaptive functionality, the objects listed in table 1
must be specified.

Object Behaviour
Mc Client Monitoring monitors resources in the machine.
Cx Complex Coder codes original video.
Dx Complex Decoder decodes Cx’s stream.
Dp Partial Decoder partially decodes Cx’s stream into Cp’s

stream.
Df Final Decoder completely decodes Cp’s stream.
Uh Uncompressed Handler handles uncompressed stream.
Sr Stream Retransmitter redirects stream from video server

to adjacent machine.

Table 1: Adaptive objects

 4

As can be seen above, Dx, a complex but efficient
decoder, must decode the video that was coded by the Cx
coder object. While the video stream is being decoded,
Dx consumes most of the resources available on client
machine A. Since concurrent processes may end up
consuming all of its remaining resources, it is necessary
to trigger the partial Dp and the final Df decoders in
order to block such an occurrence. In this regard, the Dp
decoder must be run on adjacent machine B, which
would then send the partially decoded stream to the
client machine A. The Df decoder on the client machine
A finally decodes the video stream from Dp object. The
resulting scenario makes it possible to immediately detect
any and all conditional dependencies among the objects.
The expressions below describe these dependencies.

Stop (Dx in A) ← Mc(50% occupied)
Start (Dp in B) ← Mc(50% occupied) and (Dx:stopped)
Start (Df in A) ← (Dx:stopped) and (Dp:running)

If further resources are needed, the video stream

must be totally decoded on the adjacent machine B by Dx
object. Therefore, it is necessary to stop decoder Df on
client machine A, start both decoder object Dx on
adjacent machine B and object Uh on client machine A.

Stop (Df in A) ← Mc(95% occupied)
Stop (Dp in B) ← (Df:stopped)
Start (Dx in B) ← Mc(95% occupied) and (Df:stopped)
Start (Uh in A) ← (Df:stopped) and (Dx:running)

3: The Architecture

The system’s architecture is based on the client-

server paradigm. Two kinds of machines are involved:
the controller and servers (Figure 3). Every server
machine hosts a monitoring server object, which
responds to requests from the controller machine to: (i)
send object state information back to it and (ii) alter the
state of the objects.

Monitoring
Server
Ob ject

Server Machine

Controler
Machine

………Oa
Ob Oc

Od

Monitoring
Server
Object

Server Machine

Oa
Ob Oc

Od

Figure 3 –Architecture

The system’s architecture calls for a single

controller machine, which is in charge of controlling

the execution/adaptation of the application in accordance
with the net of causality requirements derived from the
conditional dependencies specification. This adaptation
is also based on the object state information retrieved
from the monitoring-sever-object in the server
machines. The software components in the controller
machine are structured in a layered manner (Figure 4).
The monitoring client layer, the first component, is
responsible for retrieving state information from
monitoring-sever-objects. This information is stored in
a specific table within this layer. This table also
associates all the application objects with the respective
machines that compose the application’s environment.
Each change in this table results in a notification to the
adaptation layer. The monitoring client layer also
sends messages to the monitoring-server-objects to
control the states of the objects. These messages are
related to the state of the objects as shown in Figure 1.
The adaptation layer, the second component, is
concerned with interpreting the application
specification, which is a script file that defines the
regular and adapted behavior. The adaptation is
triggered in compliance with the state information
recovered by the monitoring client layer and the
application specification. Each adaptation consists of:
(i) finding out, via the dependency expressions, which
actions should be taken (ii) signalling the execution
layer what actions are to be performed (with the
assigned objects). The execution layer, the third
component, deals with the coordination of the
application execution in accordance with the adaptation
layer and based on the table information within the
client layer.

This architecture can be better explained by the
example mentioned in section 2. Ideally, the “Mc”
(Client Monitor) object should be run on the controller
machine to decrease the response time of the system
since both the adaptation and the execution layers are
hosted in this same machine. The other objects could be
run in any of the machines in the system’s environment.
To illustrate these interactions, let’ s suppose that the
client machine is 50% occupied. As soon as the
monitoring server object hosted in the same machine
receives this event, it sends an asynchronous message
(trap) to the monitoring client layer, which updates its
table and informs the adaptation layer of this event. The
adaptation layer then signals the execution layer to
stop “Dx” (Stop(Dx) ← Mc(50% occupied)). The
execution layer acts on these objects by way of the
monitoring client layer.

 5

Monitor ing
Client
Layer

Adaptation
Layer

Execut ion
Layer

Application

specif ication

Table

Figure 4 – The Adaptation Layered Architecture

4: Identifying inconsistencies

The specification of an adaptive application is

determined in a two-step process: all the objects needed
to perform the required functionalities are established,
and the dependencies and the conditional links are set.
To the extent that the specification of the conditional
dependencies are critical (that defines the adapted
behavior), a judicious verification process is carried out
so that the correctness of the adaptation is guaranteed.
The following three types of inconsistencies are the most
common errors found in complex specifications. In
section 5, we propose a verification mechanism that
automatically points out those kinds of inconsistencies:

1) A chain of conditional links between original

objects and their alternative ones may create loops, as
illustrated in Figure 5. These loops may appear in three
different ways: (i) an alternative object is simultaneously
started and stoped, (ii) an alternative object is started,
when it is running, and (iii) an alternative object is
stoped, when it is not running anymore. Based on the
example presented in section 2, the following
inconsistencies may be erroneously introduced into the
execution file by the programmer:

1
2
3
4

5
6
7

//First system fault
Stop (Dx in A) ← Mc(50% occupied)
Start (Dp in B) ← Mc(50% occupied) and (Dx:stopped)
Start (Sr in A) ← (Dx:stopped)
Start (Df in A) ← (Dp:started) and (Dx:stopped)
//Second system fault
Stop (Df in A) ← Mc(95% occupied) and (Df:running)
Start (Uh in A) ← (Df:stopped) //Figure 3b
Start (Dx in B) ← (Uh:started) and (Df:stopped)

8
9
10
11

12
13
14
15

//Resources available at client machine
Stop (Df in A) ← Mc(5% occupied) and (Df:running)
Stop (Dp in B) ← Mc(5% occupied) and (Df:stopped)
Start (Dx in A) ← Mc(5% occupied) and (Df:stopped)
Stop (Sr in A) ← (Dx:started)
//50% available resources
Stop (Uh in A) ← Mc(50% occupied) and (Uh: running)
Stop (Dx in B) ← (Dx:running) and (Uh:stopped)
Start (Dp in B) ← Mc(50% occupied) and (Uh: stopped)
Start (Df in A) ← Mc(50 % occupied) and (Dp:started)

Lines 1, 2 and 14 produce an inconsistency because
the Dp object will be started twice in machine B. Lines 6
and 12 also produce an inconsistency because Uh is
started and stopped at the same time (Figure 3).

Alternative Objects

Df

“If Df stopped,
start Uh”

Original Objects

Mc
Uh

“if Mc(50%),
Stop Uh”

Figure 5 - Loop between Conditional links

2) A dependency expression of a conditional link

can never be true. Consequently, the conditional link will
never be triggered. As illustrated in Figure 6, the handler
Uh will be started if Dp and Dx were stopped, but by the
example below whenever Dx is stopped Dp is started, so
they will never be at the stopped state at the same time.

1
2
3
4

Stop (Dx in A) ← Mc(50% occupied)
Start (Dp in B) ← (Dx:stopped)
Start (Df in A) ← (Dp:started) and (Dx:stopped)
Start (Uh in A) ← (Df:stopped) and (Dx:stopped)

Alternatives Objects

“if Dx stopped,

start Dp” Dp

Uh

“if Dx stopped and
Dp stopped,

Start Uh”

Original Object

Dx

Figure 6 – Conditional Link never triggered.

3) The conditional links defined among objects

that are started at different times, or objects that are
started together but have distinct durations, may cause
the interruption of an object that have already been
executed. Figure 7.a shows the timeline of the original
objects. Figure 7.b shows the conditional links specified
within the specification. In the lines below, let tf be the
instant when Df finishes its task, tp be the instant when
Dp finishes its own, and ts be the instant when Mc
detects that the system is 95% occupied. Uh and Dx
must replace Dp and Df respectively at ts instant. If ts <
tp the objects will be replaced correctly. However, if tp <
ts < tf, there is an inconsistency because Dx will never be
started since Dp has already been stopped.
1
2
3
4

Stop (Df in A) ← Mc(95% occupied)
Stop (Dp in B) ← Mc(95% occupied)
Start (Uh in A) ← Mc(95% occupied) and (Df:interrupted)
Start (Dx in B) ← Mc(95% occupied) and (Dp:interrupted)

 6

Alternative Objects

Dx

Original Objects

Df

Dp

tp tf ti

Df

a) b)

“ If MC (50%),
stop Dp”

Dp

Mc Uh

“ If MC (50%),
stop Df”

“ If Df interrupted,
start Uh”

“ If Dp interrupted,
start Dx”

Figure 7 - Conditional Link deactivating an

object that has already been executed (tp<ts<t f)

5: Verification procedures

Specification inconsistencies can be detected by

creating a list of all possible events related to all
application’s objects. List analysis enables to identify the
first type of inconsistency described in section 4 (Figure
5), which consists of identifying for each object the
existence of more than one event (StartLink or
StopLink) referring to it. To represent all possible
adaptations, it is necessary to keep track of all events
within the application specification, which can make
changes in the system’s state. The simulation of those
events is the first step in the verification process. Our
solution is to use the controller machine to simulate those
events, which is done by exchanging messages with the
adaptation layer. Messages are sent to the adaptation
layer as well as reports to the execution layer for every
event generated. These messages are intercepted and
used in our verification procedure.

The event simulation is also a solution that allows
for the identification of the second type of inconsistency
(Figure 6). After the execution of all simulations, it is
possible to identify conditional links that have never been
triggered.

The detection of the third type of inconsistency
(Figure 7), which is time dependent, is a more complex
task. In this case, the simulation of these events related to
the same object in distinct moments allows the
adaptation process to be verified. Once more, the
simulation of events can be done as often as needed to
validate the application specification since the
controller machine is used. In this manner the
application specification will only be validated if no
changes occur in any object that no longer exists.

In order to determine the moment when these
simulations must occur, the solution proposed in this
paper makes use of a state diagram. In this diagram,
transitions between states occur when at least one object
is activated or deactivated. These transitions are
represented by lists of events. The application state is

defined by two sets of objects: the set of running objects
(AM) and the set of objects that are not running (PM).

Figure 8 i llustrates a state diagram related to the
timeline showed in the same figure.

A

B

C

D

tempo

[s_A, s_B]

[e_B, s_C, s_D]

[e_A, e_C]

[e_D]

s0

s1

s2

s3

s4

PM0=∅
AM0=∅

PM1=∅
AM1={A,B}

PM2={B}
AM2={A,C,D}

PM3={B,D}
AM3={A,C}

PM4={B,D,A,C}
AM4=∅

Figure 8 – State diagram of an adaptive
document

The state diagram allows the adaptation behaviour to

be analysed in accordance with the states in which the
event is simulated. As previously described,
inconsistencies are detected in any particular states. For
example, the replacement of A by its alternative object is
only classified as an inconsistency if the adaptation is
activated in state si, where A is no longer activated (i.e.
A∉∉∉∉AMi and A∈∈∈∈PMi).

In the state diagram, each states si is covered (with
the exception of the first and last states) and for each
object A that is running in the state (A∈∈∈∈AMi), an event
(ex. stopped) is simulated. For each event, an adaptation
process is triggered and the adaptation layer is called.
The adaptation layer executes the adaptation process
and signals the changes that must be made to the
execution layer. By intercepting those signals, it is
possible to create a list of all actions and events that has
been triggered.

For each list created, a new state diagram is built to
represent it. This new state diagram is then added to the
original one. To illustrate this process, lets consider the
example shown in Figure 9. A timeline of the original
objects (Figure 9.a) is shown and its state diagram
(Figure 9.b). An interruption event is simulated in object
C inside the state sA2. According to the conditional links
defined in Figure 9.c, the adaptation consists of replacing
object C by object F. Figure 10 shows a timeline of the
adapted objects (Figure 10.a) and its corresponding state
diagram (Figure 10.b).

Suppose that the C object crashes. The F object
must be activated from the beginning. Since, the F
object is started only in sB2, the first two states can be
ignored. Therefore, the adaptive process is really started

 7

in sB2 (Figure 10.b). Both diagrams (the regular and
adapted one) are joined together with a new transition.
This new transition connects the state where the
interruption event occur (sA2) and the state in which the
adaptation is started (sB2). The event list that represents
this transition is defined in terms of a set of activated
objects from both states. In the example, MA2={A, C}
and MB2={A, F}, the event list, about the transition
between sA2 and sB2, must be [e_C, s_F] (Figure 11.a).

The adapted set of objects generated by the
aggregation process branch off from the state where the
interruption was simulated. Depending on the result of
the adaptation process, this branch may return to the
main path (defined by the original objects), which occurs
when the adaptation process only handles (replaces or
cancel) objects from a specific fragment of the state
diagram. In this manner, the final states from the
adapted set of objects are equivalent to the original set of
objects. In the last example, described in Figure 11.a,
the final sB3 and sB4 states are equivalent to the sA3 and
sB4 states. Therefore, this equivalency allows sB3 and sB4
to be ignored. Thus, the sA2 state becomes the
subsequent state of sA3. The final result from the
aggregation process is shown in Figure 11.b. In this
specific example shown in Figure 11, it is important to
notice that the last state in the adapted diagram is always
equivalent to the last state in the original one.

B

time

Interruption of
object “C” in the

state sA2.

D

 C

A

b) State Diagram a) Timeline of the
original

document

“If A interrupted,
startr E”

Alternatives Objects

F

B

Original Objects

E
A

D

C “ If C interrupted,
start F”

c) Conditional Links

[s_A, s_B]

[e_B, s_C]

[e_A, e_D]

[e_C, s_D]

sA0

sA1

sA2

sA3

sA4

PMA0=∅
MA0=∅

PMA1=∅
MA1={A,B}

PMA2={B}
MA2={A,C}

PMA3={B,C}
MA3={A,D}

PMA4={B,C,D,A}
MA4=∅

t

Figure 9 - The adaptive document

B

time

D
F

A

b) State diagram a) Timeline of the adapted
document

The beginning of F

[s_A, s_B]

[e_B, s_F]

sB1
PMB1=∅

MB1={A,B}

[e_F, s_D]

[e_A, e_D]

sB0

sB2

sB3

sB4

PMB0=∅
MB0=∅

PMB1={B}
MB1={A,F}

PMB2={B,F}
MB2={A,D}

PMB3={B,F,A,D}
MB3=∅

State where the
document is
restated

Figure 10 - The adapted document

 a) State diagram

 Original Document

Similar
states

b) States diagram
aggregated

[s_A, s_B]

[e_B, s_C]

[e_A, e_D]

[e_C, s_D]

sA0

sA1

sA2

sA3

sA4

PMA0=∅
MA0=∅

PMA1=∅
MA1={A,B}

PMA2={B}
MA2={A,C}

PMA3={B,C}
MA3={A,D}

PMA4={B,C,D,A}
MA4=∅

[e_F, s_D]

[e_A, e_D]

sB2

sB3

sB4

PMB2={B}
MB 2={A,F}

PMB2={B,F}
MB2={A,D}

PMB3={B,F,A,D}
MB3=∅

[s_A, s_B]

[e_B, s_C]

[e_A, e_D]

[e_C, s_D]

sA0

sA1

sA2

sA3

sA4

[e_C, s_F]

[e_F, s_D]

sB2

Brach
representing
the adaptation

[e_C, s_F]

Adapted application

Figure 11 - State diagram aggregation

Finally, after the simulation of all possible

adaptations, a state diagram is built. This final
aggregated diagram describes the whole gamut of
adaptive behavior. For each adaptive branch, a list of
triggered stopLinks and startLinks can be seen.

6: Conclusions

In this paper, we have presented a new way of

adapting distributed systems that combines the
traditional temporal model with an approach based on
the specification of causal relationships among objects.
The integration of the link concept with dependency
expressions provides a powerful tool for specifying
adaptive applications that are easily manipulated. The
novelty of our approach is that the implementation of
verification tools to find out inconsistent behavior and
the framework to coordinate distributed applications rely
on the same mechanisms.

This approach has already been used in distributed
multimedia systems and all mechanisms discussed in this
paper have been intensely tested inside the ServiMidia
Project. The key difference from multimedia
specification is that the regular and adapted behavior
(conditional dependencies) is defined in a single file.
The scheme adopted in ServiMidia specifies two
different files. One file stores the original multimedia
document (SMIL language) while the other file, the
adapted multimedia document. This scheme is employed
to preserve backward compatibility with legacy
multimedia systems and also to simplify the development
process of a player for adaptive documents.

Depending on the area of interest (control systems,
building automation...), we can foresee the use of the
same strategy.

 8

 References

[1] E.C. Cunha, L.F.R.C. Carmo, L. Pirmez, “Design of an

Integrated Environment for Adaptive Multimedia Document
Presentation Through Real Time Monitoring”, Lecture Notes
in Computer Sciences v. 1718, Springer Verlag, 1999.

[2] J. Goldberg, I. Greenberg, and T. Lawrence. “Adaptive fault
tolerance”. In Proceedings of the IEEE Workshop on
Advances in Parallel and Distributed Systems, pages 127–
132, Oct 1993.

[3] Lea R., Yokote Y. and Itoh J., “Adaptive Operating System
design using reflection” In Proceedings of the 5 th Workshop
on Hot Topics on Operating Systems, pages 95--100, 1995.

[4] Fabio Kon, Roy Campbell, Marshall Mickunas, Klara
Nahrstedt, and Francisco Ballesteros. “2k: A distributed
operating system for dynamic heterogeneous
environments” . In IEEE International High Performance
Distributed Computing (HPDC), 2000.

[5] E. Nett, M. Gergeleit, and M. Mock “An Adaptive Approach
to Object-Oriented Real-Time Computing” - IEEE. Published
in the Proceedings of ISORC’98, 20-22 April 1998 in Kyoto,
Japan.

[6] Fabian E. Bustamante, Greg Eisenhauer, Patrick Widener,
Karsten Schwan, and Calton Pu “Active Streams: An
approach to adaptive distributed systems” - In Proc. 8th
Workshop on Hot Topics in Operating Systems (HotOs-VIII),
2001.

[7] Hiltunen, Matti A. and Schlichting, Richard D., “Adaptive
Distributed and Fault-Tolerant Systems” Department of
Computer Science - University of Arizona June, 1995

[8] B. Bhargava, K. Friesen, A. Helal, and J. Riedl. “Adaptability
experiments in the RAID distributed database system.” In
Proceedings of the 9th IEEE Symposium on Reliable
Distributed Systems, pages 76–85, 1990.

[9] T. Bihari and K. Schwan. “Dynamic adaptation of real-time
software.” ACM Transaction on ComputerSystems,
9(2):143–174, May 1991.

[10] K. Schwan, T. Bihari, and B. Blake. “Adaptive, reliable
software for distributed and parallel real-time systems”. In
Proceedings of the 6th IEEE Symposium on Reliability in
Distributed Software and Database Systems, pages 32–42,
Mar 1987.

[11] D. Schmidt, D. Box, and T. Suda. “ADAPTIVE: A
dynamically assembled protocol transformation, integration,
and evaluation environment” . Concurrency: Practice and
Experience, 5(4):269–286, Jun 1993.

[12] ISO/IEC DIS 13522-5, “ Information Technology Coding of
Multimedia and Hypermedia Information, Part 5: Support for
Base-Level Interactive Applications, MHEG-5 IS Document
Pre-release 5”, 1996.

[13] J.P. Courtiat, L.F.R.C. Carmo, R.C. de Oliveira, "A General-
purpose Multimedia Synchronization Mechanism Based on
Causal Relations", IEEE Journal on Selected Areas in
Communications - Synchronization Issues in Multimedia
Communications, Vol. 14, N. 1, January, 1996.

[14] G. Blakowski, R. Steinmetz, “A Media synchronization
Survey: Reference Model, Specification, and Case Studies”,
IEEE Journal on Selected Areas in Communications -

Synchronization Issues in Multimedia Communications, Vol.
14, N. 1, January, 1996.

[15] Aurrecoechea C, Campbell AT, Hauw L, “A survey of QoS
architectures”, ACM Multimedia Systems 6:138-151, 1998.

[16] Hiroaki Higaki, et al, “Protolcols for Groups for of Pseudo-
Active Replicated Objects” IEEE Computer Society Fifth.

