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Abstract 

Distributed programming is applicable in a wide range 
of domains such as control systems. These systems are 
subject to mutable environments and must also provide 
a time varying adaptive set of functionalities. An 
adaptive system is defined by means of two main 
features: (i) an approach to specify the correspondence 
between objects and resources and (ii) the related 
mechanisms to assure dynamically the right set of 
objects running. The conditional dependency concept 
has proven to be an efficient way to specify this kind of 
correspondence between resources and objects for 
adaptive systems in the context of multimedia 
distributed processing (ServiMidia Project [1]). This 
paper presents a framework for designing general 
purpose adaptive systems anchored on the concept of 
conditional dependencies. As the use of such approach 
may lead to inconsistent system behaviour when 
specifying very large systems, we show that it is easy to 
design verification tools based on the same framework 
mechanisms.  
 
 
1: Introduction 

 
A modern computing environment is characterized 

by a high degree of mobility, heterogeneity, and 
interactions among computing devices. The key 
requirement for systems in such an environment is the 
flexibility to adapt to drastic changes that may occur.  
These changes profoundly impact the performance of 
user applications. 

A distributed system is a good choice to address 
these issues.  Distributed applications are sets of objects 
working in a cooperative fashion.  Any one of the 

machines in the environment can host objects. In this 
way, these applications are able to utilize the available 
resources more efficiently.  In addition, performance is 
higher since parallel processing is the main goal.  
Objects are also considered components that have 
specialized functions.  The execution coordination of 
objects is achieved by exchanging messages so that 
applications are capable of guaranteeing the correctness 
of its execution.   

Although previous research exists, distributed 
systems do not offer enough support for managing, 
adapting, and reacting to these changes. For a safe 
distributed application, timely and dependable services it 
should be maintained despite any component failures or 
environmental changes.  Our goal is to present an 
adaptive approach that will make it possible for 
applications to not only effectively deal with the 
changing environment in which they are run but also be 
able to fulfil l their varied functionalities. 

This adaptive approach may interrupt or start an 
object depending on the functionality that the application 
is supposed to accomplish. Further, objects may be 
interrupted due to a lack of resources in one machine and 
resume on another in which resources are available. 

Failure recoveries in dependable systems are 
essentially a process of adaptation [2] and many adaptive 
mechanisms have already been proposed. Some of these 
mechanisms implement the adaptation process inside the 
operating systems [3, 4], others in the middleware [5, 6].  
There are also others that build general models to 
facilitate the deployment of the adaptation process [7]. 
Examples of these approaches are the concurrency 
control of database transactions [8], real-time parallel 
systems [9, 10], and high-speed communication protocols 
[11]. Our approach differs in that it proposes an original 
and simplified way of specifying adaptability 
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requirements with conditional dependencies, which 
makes it possible to verify the consistency of the 
specification by employing the same mechanisms 
necessary for its processing.  

This paper introduces in Section 2 the concept of 
conditional dependencies and how to use it to specify 
distributed adaptive applications.  Section 3 discusses 
architectural issues to create adaptive systems according 
to the proposed strategy.  Section 4 points out several 
inconsistencies that may occur during the specification 
process. Section 5 provides some directives to verify the 
consistency of a specification. Section 6 finally reports 
some of the conclusions of this paper.   

 
2: Specification of an Adaptive Application  

 
The process of adaptation is defined as the 

substitution of a group of running objects (GOa) for a 
different group of objects (GOb).  In a more general sense, 
the process of adaptation can also be defined as the 
replacement of an object by another one or by a group of 
objects.  Moreover, an object may substitute a group of 
objects. 

Basically, an adaptation strategy allows distributed 
applications to specify different states.  Application states 
are related to specific sets of actions that must be taken 
during a period of time.  An application state is 
established by stopping or running objects as shown in 
Figure 1.  

Application

Oa

State 1

Oa Running
Ob Running
Oc Stopped
Od Stopped
Oe Stopped

Ob
Oc

Od Oe

State 2

Oa Stopped
Ob Running
Oc Running
Od Stopped
Oe Running

Figure 1 - Application states 
 
To coordinate the execution of a distributed 

application, it is necessary to determine the spatial 
positioning of the objects and the establishment of 
temporal relationships among the objects. Spatial 
positioning allows application developers to organize the 
physical positioning of the objects in the environment 
according to resources availability or/and optimisation 
requirements such as network bandwidth and delay. 
Temporal relationships are specified by defining initial 
instants and durations of the involved objects. The 
temporal relationship among the objects must be 
associated to a synchronization model, which governs 
how these objects are linked to each other.  Schemes 
based solely on timelines present a series of limitations.  

In other words, it is very difficult to structure the 
application’s execution and establish relationships 
among objects of variable or unknown duration. To 
overcome these limitations, we propose a specification 
approach that combines: (1) a model of temporal 
synchronization based on timelines; and (2) a model of 
causal synchronization based on conditional 
relationships among the involved objects associated to 
the temporal model above. 
 
2.1: Temporal requirements 

 
An application consists of different types of objects 

that are activated/deactivated at different instants of time 
and durations. The beginning instants and durations of 
these objects’  activities are specified by either an 
inflexible (hard) or flexible time specification. In the case 
of an inflexible specification, these instants and durations 
are fixed, whereas, in a flexible specification, these 
instants vary within a range of values. 

A flexible temporal specification is obtained through 
the establishment of margins of tolerance for the 
beginning of an object’ s execution, i.e., when temporal 
intervals are defined, objects may be started at any 
instant within this interval. The timing aspects are 
expressed via a margin of tolerance (range), the initial 
instant, and the duration. 

 
2.2: Causal requirements  

 
The key to deploying distributed applications that 

are able to adapt themselves when they are confronted 
with changes in the environment is to provide for these 
applications the means of changing their states.  These 
adapted states allow preserving the set of functionalities, 
which the application was designed to perform.  To deal 
with this problem, the application developer must specify 
the correct temporal and logical relationships among the 
application’s objects so that a coherent adaptation can be 
accomplished. 

In using the concept of causal synchronization, the 
application developer can specifies conditional 
dependencies among the objects to construct a net of 
causality that determines the application be correctly 
executed. 

The specification strategy for adaptive applications 
is based on the link concept. The use of links is quite 
common and is fundamental in the hypermedia and 
hypertext areas. In these areas, the links are defined as 
pointers inside a hypermedia or hypertext document. The 
pointers point to locations inside the same document or 
inside other documents. These locations are called nodes.  
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In this way, the links create a mesh of connected nodes 
so that it is possible for the users to navigate throughout 
the interlinked documents. 

The MHEG-5 standard [12] defines a Link object, 
which consists of a LinkCondition and a LinkEffect. The 
LinkEffect, which is a list of elementary actions, is 
executed when the LinkCondition becomes true. In 
MHEG-5, a LinkCondition is always fired when an event 
occurs. An event always emanates from only one object. 
In this paper, the definition of link concept, while based 
on the MHEG-5 standard, is broadened to include the 
ability to express adaptability requirements. A Link 
object is made up of a LinkSource and a LinkTarget. A 
LinkSource consists of a list of SourceConditions 
associated to different source objects. A LinkTarget 
related to only one target object is formed by a 
TargetAction and a TargetDexpr (dependency 
expression). TargetDexpr interrelates SourceConditions 
to describe the semantic requirements that must be 
followed during the application processing. When a link 
is fired, it executes its TargetDexpr. It is then verified, 
and when it becomes true, the TargetAction is executed. 
Figure 2 depicts a Link object whose LinkSource is 
composed of N1, N2 and N3 conditions. This Link object 
has also a LinkTarget that, in turn, is formed by a 
TargetDexpr and the TargetAction N4. 

To specify these conditional dependencies among 
objects, two link object types are defined: startLink and 
stopLink. They are related to the actions of starting and 
stopping a unique object execution.  

Two states associated to SourceConditions are 
defined as running either stopped. Specification of a 
SourceCondition is defined according to source:state 
syntax. For example, when object x is running, its 
SourceCondition is specified by the x:running  
expression. In the same way, a link’s TargetAction, is 
specified by the target:action expression. In the case of a 
link’s startlink for object y, its TargetAction must be 
specified by the y:start.  

The specification of TargetDexpr is done via a 
Boolean expression that combines the SourceConditions 
within this Link object. For example, the x:running and 
y:stopped dependency expressions can be specified to test 
if object x is running and if object y is stopped. Finally, 
the specification of a link is defined according to the 
following syntax:  link-id = TargetAction ←←←← 
TargetDexpr, in which link-id is the Link identification. 
This nomenclature symbolizes that Link-id possesses a 
dependency expression that must be satisfied so that the 
TargetAction can be executed. 

 
 
 

 

N1 

TargetAction 

Source 
Conditions 

N2 N4 
Target 
Dexpr 

LinkSource 
LinkTarget 

N3 

 
Figure 2 - A Link object representation 

 
2.3:  Application Example 

 
A video stream transmitted over the Internet 

perfectly il lustrates how the adaptive mechanism works.   
The original video is coded with Cx coder and stored in a 
video server.  This compressed video stream must be 
decoded by running Dx object on the client machine, 
which continues until the end of the presentation if 
resource availability remains constant.  Unfortunately, 
the amount of resources in the network and in the client 
machine varies over time due to concurrent processes 
that share these same resources. The situation described 
above in which the Dx object decodes the compressed 
stream minimizes the usage of network bandwidth. 
However Dx object consumes a huge amount of resources 
(CPU cycles and memory) of the client machine.  If a 
resource shortage occurs due to other concurrent 
processes that are running on the client machine during 
this video presentation, an adaptive mechanism must be 
triggered to cope with this resource shortage. The main 
idea is to substitute object Dx by two alternative Dp and 
Df objects.  The Dp object, which partially decodes the 
video stream from the server, is run on an adjacent 
machine (in the same subnet) while, as the final step, the 
Df object, which decodes the stream from the Dp object, 
is run on the client machine.  In this way, resources are 
freed in the client machine since object Df is a decoder 
that consumes fewer resources.  In order to comply with 
this adaptive functionality, the objects listed in table 1 
must be specified. 

 
 

Object Behaviour 
Mc Client Monitoring monitors resources in the machine. 
Cx Complex Coder codes original video. 
Dx Complex Decoder decodes Cx’s stream. 
Dp Partial Decoder partially decodes Cx’s stream into Cp’s 

stream. 
Df Final Decoder completely decodes Cp’s stream. 
Uh Uncompressed Handler handles uncompressed stream. 
Sr Stream Retransmitter redirects stream from video server 

to adjacent machine. 

Table 1: Adaptive objects 
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As can be seen above, Dx, a complex but efficient 
decoder, must decode the video that was coded by the Cx 
coder object.  While the video stream is being decoded, 
Dx consumes most of the resources available on client 
machine A.  Since concurrent processes may end up 
consuming all of its remaining resources, it is necessary 
to trigger the partial Dp and the final Df decoders in 
order to block such an occurrence.  In this regard, the Dp 
decoder must be run on adjacent machine B, which 
would then send the partially decoded stream to the 
client machine A. The Df decoder on the client machine 
A finally decodes the video stream from Dp object.  The 
resulting scenario makes it possible to immediately detect 
any and all conditional dependencies among the objects.  
The expressions below describe these dependencies. 

 
Stop (Dx in A) ← Mc(50% occupied) 
Start (Dp in B) ← Mc(50% occupied) and (Dx:stopped) 
Start (Df in A) ← (Dx:stopped) and (Dp:running) 

 
If further resources are needed, the video stream 

must be totally decoded on the adjacent machine B by Dx 
object.  Therefore, it is necessary to stop decoder Df on 
client machine A, start both decoder object Dx on 
adjacent machine B and object Uh on client machine A.  

 
Stop (Df in A) ← Mc(95% occupied) 
Stop (Dp in B) ← (Df:stopped) 
Start (Dx in B) ← Mc(95% occupied) and (Df:stopped) 
Start (Uh in A) ← (Df:stopped) and (Dx:running) 

 
3:  The Architecture  

 
The system’s architecture is based on the client-

server paradigm. Two kinds of machines are involved: 
the controller and servers (Figure 3).  Every server 
machine hosts a monitoring server object, which 
responds to requests from the controller machine to: (i) 
send object state information back to it and (ii) alter the 
state of the objects.  

 

Monitoring
Server
Ob ject

Server Machine

Controler
Machine

………Oa
Ob Oc

Od

Monitoring
Server
Object

Server Machine

Oa
Ob Oc

Od

 
Figure 3 –Architecture 

 
The system’s architecture calls for a single 

controller machine, which is in charge of controlling 

the execution/adaptation of the application in accordance 
with the net of causality requirements derived from the 
conditional dependencies specification. This adaptation 
is also based on the object state information retrieved 
from the monitoring-sever-object in the server 
machines.  The software components in the controller 
machine are structured in a layered manner (Figure 4). 
The monitoring client layer, the first component, is 
responsible for retrieving state information from 
monitoring-sever-objects.  This information is stored in 
a specific table within this layer.  This table also 
associates all the application objects with the respective 
machines that compose the application’s environment.  
Each change in this table results in a notification to the 
adaptation layer.  The monitoring client layer also 
sends messages to the monitoring-server-objects to 
control the states of the objects. These messages are 
related to the state of the objects as shown in Figure 1. 
The adaptation layer, the second component, is 
concerned with interpreting the application 
specification, which is a script file that defines the 
regular and adapted behavior.  The adaptation is 
triggered in compliance with the state information 
recovered by the monitoring client layer and the 
application specification. Each adaptation consists of: 
(i) finding out, via the dependency expressions, which 
actions should be taken (ii) signalling the execution 
layer what actions are to be performed (with the 
assigned objects). The execution layer, the third 
component, deals with the coordination of the 
application execution in accordance with the adaptation 
layer and based on the table information within the 
client layer. 

This architecture can be better explained by the 
example mentioned in section 2.  Ideally, the “Mc”  
(Client Monitor) object should be run on the controller 
machine to decrease the response time of the system 
since both the adaptation and the execution layers are 
hosted in this same machine. The other objects could be 
run in any of the machines in the system’s environment. 
To illustrate these interactions, let’ s suppose that the 
client machine is 50% occupied. As soon as the 
monitoring server object hosted in the same machine 
receives this event, it sends an asynchronous message 
(trap) to the monitoring client layer, which updates its 
table and informs the adaptation layer of this event. The 
adaptation layer then signals the execution layer to 
stop “Dx”  (Stop(Dx) ← Mc(50% occupied)).  The 
execution layer acts on these objects by way of the 
monitoring client layer. 

 



  5 

 

Monitor ing 
Client 
Layer  

Adaptation 
Layer  

Execut ion 
Layer  

 
Application 

specif ication

Table 

 
Figure 4 – The Adaptation Layered Architecture 

 
4:  Identifying inconsistencies  

 
The specification of an adaptive application is 

determined in a two-step process: all the objects needed 
to perform the required functionalities are established, 
and the dependencies and the conditional links are set. 
To the extent that the specification of the conditional 
dependencies are critical (that defines the adapted 
behavior), a judicious verification process is carried out 
so that the correctness of the adaptation is guaranteed. 
The following three types of inconsistencies are the most 
common errors found in complex specifications. In 
section 5, we propose a verification mechanism that 
automatically points out those kinds of inconsistencies: 

 
1) A chain of conditional links between original 

objects and their alternative ones may create loops, as 
illustrated in Figure 5. These loops may appear in three 
different ways: (i) an alternative object is simultaneously 
started and stoped, (ii) an alternative object is started, 
when it is running, and (iii) an alternative object is 
stoped, when it is not running anymore.  Based on the 
example presented in section 2, the following 
inconsistencies may be erroneously introduced into the 
execution file by the programmer:  
 
1 
2 
3 
4 
 
5 
6 
7 

//First system fault 
Stop (Dx in A) ← Mc(50% occupied)  
Start (Dp in B) ← Mc(50% occupied) and (Dx:stopped) 
Start (Sr in A) ← (Dx:stopped) 
Start (Df in A) ← (Dp:started) and (Dx:stopped) 
//Second system fault 
Stop (Df in A) ← Mc(95% occupied) and (Df:running)  
Start (Uh in A) ← (Df:stopped)  //Figure 3b  
Start (Dx in B) ← (Uh:started) and (Df:stopped) 

 
8 
9 
10 
11 
 
12 
13 
14 
15 

//Resources available at client machine 
Stop (Df in A) ← Mc(5% occupied) and (Df:running)  
Stop (Dp in B) ← Mc(5% occupied) and (Df:stopped) 
Start (Dx in A) ← Mc(5% occupied) and (Df:stopped) 
Stop (Sr in A) ← (Dx:started)  
//50% available resources 
Stop (Uh in A) ← Mc(50% occupied) and (Uh: running)  
Stop (Dx in B) ← (Dx:running) and (Uh:stopped) 
Start (Dp in B) ← Mc(50% occupied) and (Uh: stopped)  
Start (Df in A) ← Mc(50 % occupied) and (Dp:started) 

 

Lines 1, 2 and 14 produce an inconsistency because 
the Dp object will be started twice in machine B.  Lines 6 
and 12 also produce an inconsistency because Uh is 
started and stopped at the same time (Figure 3). 

Alternative Objects 

 

Df 

“If Df stopped,  
start Uh” 

Original Objects 

Mc 
Uh 

“if Mc(50%), 
Stop Uh” 

 
Figure 5 - Loop between Conditional links 

 
2) A dependency expression of a conditional link 

can never be true. Consequently, the conditional link will 
never be triggered. As illustrated in Figure 6, the handler 
Uh will be started if Dp and Dx were stopped, but by the 
example below whenever Dx is stopped Dp is started, so 
they will never be at the stopped state at the same time. 

1 
2 
3 
4 

Stop (Dx in A) ← Mc(50% occupied)  
Start (Dp in B) ← (Dx:stopped)  
Start (Df in A) ← (Dp:started) and (Dx:stopped) 
Start (Uh in A) ← (Df:stopped) and (Dx:stopped) 

 

Alternatives Objects 

 
“if Dx stopped, 

start Dp” Dp 

Uh 

“if Dx stopped and 
Dp stopped, 

Start Uh” 

Original Object 

Dx 

 
Figure 6 – Conditional Link never triggered. 

 
3) The conditional links defined among objects 

that are started at different times, or objects that are 
started together but have distinct durations, may cause 
the interruption of an object that have already been 
executed.  Figure 7.a shows the timeline of the original 
objects.  Figure 7.b shows the conditional links specified 
within the specification.  In the lines below, let tf be the 
instant when Df finishes its task, tp be the instant when 
Dp finishes its own, and ts be the instant when Mc 
detects that the system is 95% occupied.  Uh and Dx 
must replace Dp and Df respectively at ts instant. If ts < 
tp the objects will be replaced correctly.  However, if tp < 
ts < tf, there is an inconsistency because Dx will never be 
started since Dp has already been stopped. 
1 
2 
3 
4 

Stop (Df in A) ← Mc(95% occupied) 
Stop (Dp in B) ← Mc(95% occupied)   
Start (Uh in A) ← Mc(95% occupied) and (Df:interrupted) 
Start (Dx in B) ← Mc(95% occupied) and (Dp:interrupted) 

 



  6 

Alternative Objects 

 

Dx 

Original Objects 

Df 

Dp 

tp tf ti 

Df 

a) b) 

“ If MC (50%), 
stop Dp”  

Dp 

Mc Uh 

“ If MC (50%), 
stop Df”  

“ If Df interrupted,  
start Uh”  

“ If Dp interrupted,  
start Dx”  

 
Figure 7 - Conditional Link deactivating an 

object that has already been executed (tp<ts<t f) 
 
5:  Verification procedures 

 
Specification inconsistencies can be detected by 

creating a list of all possible events related to all 
application’s objects. List analysis enables to identify the 
first type of inconsistency described in section 4 (Figure 
5), which consists of identifying for each object the 
existence of more than one event (StartLink or 
StopLink) referring to it.  To represent all possible 
adaptations, it is necessary to keep track of all events 
within the application specification, which can make 
changes in the system’s state.  The simulation of those 
events is the first step in the verification process.  Our 
solution is to use the controller machine to simulate those 
events, which is done by exchanging messages with the 
adaptation layer. Messages are sent to the adaptation 
layer as well as reports to the execution layer for every 
event generated.  These messages are intercepted and 
used in our verification procedure. 

The event simulation is also a solution that allows 
for the identification of the second type of inconsistency 
(Figure 6).  After the execution of all simulations, it is 
possible to identify conditional links that have never been 
triggered. 

The detection of the third type of inconsistency 
(Figure 7), which is time dependent, is a more complex 
task. In this case, the simulation of these events related to 
the same object in distinct moments allows the 
adaptation process to be verified.  Once more, the 
simulation of events can be done as often as needed to 
validate the application specification since the 
controller machine is used.  In this manner the 
application specification will only be validated if no 
changes occur in any object that no longer exists.   

In order to determine the moment when these 
simulations must occur, the solution proposed in this 
paper makes use of a state diagram.  In this diagram, 
transitions between states occur when at least one object 
is activated or deactivated. These transitions are 
represented by lists of events.  The application state is 

defined by two sets of objects: the set of running objects 
(AM) and the set of objects that are not running (PM).   

Figure 8 i llustrates a state diagram related to the 
timeline showed in the same figure. 
 

A 

B 

C 

D 

tempo 

 
 

 

 

 

 

[s_A, s_B] 

[e_B, s_C, s_D] 

[e_A, e_C] 

[e_D] 

s0 

s1 

s2 

s3 

s4 

PM0=∅
AM0=∅

PM1=∅
AM1={A,B}

PM2={B}
AM2={A,C,D}

PM3={B,D}
AM3={A,C}

PM4={B,D,A,C}
AM4=∅  

Figure 8 – State diagram of an adaptive 
document 

 
The state diagram allows the adaptation behaviour to 

be analysed in accordance with the states in which the 
event is simulated.  As previously described, 
inconsistencies are detected in any particular states.  For 
example, the replacement of A by its alternative object is 
only classified as an inconsistency if the adaptation is 
activated in state si, where A is no longer activated (i.e. 
A∉∉∉∉AMi and A∈∈∈∈PMi). 

In the state diagram, each states si is covered (with 
the exception of the first and last states) and for each 
object A that is running in the state (A∈∈∈∈AMi), an event 
(ex. stopped) is simulated.  For each event, an adaptation 
process is triggered and the adaptation layer is called. 
The adaptation layer executes the adaptation process 
and signals the changes that must be made to the 
execution layer.  By intercepting those signals, it is 
possible to create a list of all actions and events that has 
been triggered. 

For each list created, a new state diagram is built to 
represent it.  This new state diagram is then added to the 
original one.  To illustrate this process, lets consider the 
example shown in Figure 9.  A timeline of the original 
objects (Figure 9.a) is shown and its state diagram 
(Figure 9.b).  An interruption event is simulated in object 
C inside the state sA2.  According to the conditional links 
defined in Figure 9.c, the adaptation consists of replacing 
object C by object F.  Figure 10 shows a timeline of the 
adapted objects (Figure 10.a) and its corresponding state 
diagram (Figure 10.b). 

Suppose that the C object crashes.  The F object 
must be activated from the beginning.  Since, the F 
object is started only in sB2, the first two states can be 
ignored.  Therefore, the adaptive process is really started 
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in sB2 (Figure 10.b).  Both diagrams (the regular and 
adapted one) are joined together with a new transition.  
This new transition connects the state where the 
interruption event occur (sA2) and the state in which the 
adaptation is started (sB2).  The event list that represents 
this transition is defined in terms of a set of activated 
objects from both states.  In the example, MA2={A, C} 
and MB2={A, F}, the event list, about the transition 
between sA2 and sB2, must be [e_C, s_F] (Figure 11.a).         

The adapted set of objects generated by the 
aggregation process branch off from the state where the 
interruption was simulated.  Depending on the result of 
the adaptation process, this branch may return to the 
main path (defined by the original objects), which occurs 
when the adaptation process only handles (replaces or 
cancel) objects from a specific fragment of the state 
diagram.  In this manner, the final states from the 
adapted set of objects are equivalent to the original set of 
objects.  In the last example, described in Figure 11.a, 
the final sB3 and sB4 states are equivalent to the sA3 and 
sB4 states.  Therefore, this equivalency allows sB3 and sB4 
to be ignored.  Thus, the sA2 state becomes the 
subsequent state of sA3.  The final result from the 
aggregation process is shown in Figure 11.b.  In this 
specific example shown in Figure 11, it is important to 
notice that the last state in the adapted diagram is always 
equivalent to the last state in the original one. 
 

B 

time 

Interruption of 
object “C” in the 

state  sA2. 

D 

  C 

A 

b) State Diagram a) Timeline of the 
original 

document 
 

“If A interrupted,  
startr E”  

Alternatives Objects 

F 

B 

Original Objects 

E 
A 

D 

C “ If C interrupted, 
start F”  

c) Conditional Links  

  

 

 

 

 

[s_A, s_B] 

[e_B, s_C] 

[e_A, e_D] 

[e_C, s_D] 

sA0 

sA1 

sA2 

sA3 

sA4 

PMA0=∅
MA0=∅

PMA1=∅
MA1={A,B}

PMA2={B}
MA2={A,C}

PMA3={B,C}
MA3={A,D}

PMA4={B,C,D,A}
MA4=∅

t 

 
Figure 9 - The adaptive document 
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[s_A, s_B] 

[e_B, s_F] 
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[e_F, s_D] 

[e_A, e_D] 
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sB2 

sB3 

sB4 

PMB0=∅
MB0=∅

PMB1={B}
MB1={A,F}

PMB2={B,F}
MB2={A,D}

PMB3={B,F,A,D}
MB3=∅

State where the 
document is 
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Figure 10 - The adapted document 
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Figure 11 - State diagram aggregation 

 
Finally, after the simulation of all possible 

adaptations, a state diagram is built. This final 
aggregated diagram describes the whole gamut of 
adaptive behavior. For each adaptive branch, a list of 
triggered stopLinks and startLinks can be seen. 
 
6: Conclusions 

 
In this paper, we have presented a new way of 

adapting distributed systems that combines the 
traditional temporal model with an approach based on 
the specification of causal relationships among objects. 
The integration of the link concept with dependency 
expressions provides a powerful tool for specifying 
adaptive applications that are easily manipulated. The 
novelty of our approach is that the implementation of 
verification tools to find out inconsistent behavior and 
the framework to coordinate distributed applications rely 
on the same mechanisms.  

This approach has already been used in distributed 
multimedia systems and all mechanisms discussed in this 
paper have been intensely tested inside the ServiMidia 
Project. The key difference from multimedia 
specification is that the regular and adapted behavior 
(conditional dependencies) is defined in a single file.  
The scheme adopted in ServiMidia specifies two 
different files.  One file stores the original multimedia 
document (SMIL language) while the other file, the 
adapted multimedia document.  This scheme is employed 
to preserve backward compatibility with legacy 
multimedia systems and also to simplify the development 
process of a player for adaptive documents.  

Depending on the area of interest (control systems, 
building automation...), we can foresee the use of the 
same strategy.   
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