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Abstract 

In the past few years the massive deployment of real-
time multimedia services has motivated the research 
community to investigate new quality of service (QoS) 
mechanisms to overcome the limitations of IP networks.  
Since assured levels of service must be provided, these 
mechanisms should interact flexibly with network 
performance management systems.  When such 
integration is achieved, it is possible to trigger actions 
effectively to prevent QoS failures and simultaneously to 
balance network load.  Mechanisms for rerouting traffic 
flows of QoS critical applications may be employed to 
support performance management systems in satisfying 
the application requirements.  In addition, proactive 
actions could be taken before applications are affected by 
QoS failures.  To meet these goals, a proactive network 
management and rerouting framework is introduced.  The 
proposed framework is based on active technology and 
aims at providing the means needed for establishing new 
routes with sufficient resources for traffic flows of QoS 
critical distributed applications.  A system prototype using 
the proposed framework was implemented and test results 
show that its deployment is feasible considering the 
hardware processing capability available today. 

1. Introduction 
A precise, efficient, and rapid network management 

system is the key mechanism to guarantee the specific 
quality of service (QoS) levels needed for distributed 
multimedia applications.  In addition to being distributed 
and platform independent, this mechanism must have the 
capacity to be easily updated and yet to be flexible enough 
to promptly assimilate the introduction of new 
functionalities.  Another desirable characteristic is to be 
proactive, taking corrective actions prior to QoS failures.  
In other words, the network management system should 
detect the QoS reduction trend and either try to reverse it, 

or minimize the user perception when the network fails to 
provide the required QoS levels.  This management 
system should also be extended from network to 
workstations, communication services and applications. 

Recent research has shown that Active Technology 
offers the flexibility and distribution assets required for 
management systems of the future [1].  The key concept 
of active technology is allowing software to be spread on 
demand in the network and at its border. The high degree 
of flexibility achieved in such a distributed processing 
environment allows new functionalities to be deployed to 
fulfill application QoS needs. 

Rerouting of traffic flows through the network is 
being considered as an important component to improve 
the availability and response time of distributed systems.  
Since the convergence time of IP routing algorithms is 
usually very high [2] and is dependent on network size, 
rerouting real-time multimedia traffic flows is unfeasible.  
To address this problem, virtual circuit technologies such 
as the Multiprotocol Label Switching (MPLS) framework 
[3] are being deployed on IP networks to provide for the 
efficient designation, routing, forwarding, and switching 
of traffic flows through the network.  These technologies 
are critical to increase the probability that application QoS 
needs will be satisfied by the network infrastructure. 

This paper proposes a distributed architecture for 
network management that, besides using active 
technology, is totally platform independent.  A proactive 
rerouting architecture is also introduced. It uses the 
proposed network management infrastructure to avoid 
QoS failures by redirecting application traffic flows 
through redundant routes.  

A system based on these two proposed architectures 
has been implemented and used, along with a distributed 
multimedia system, to show the advantages and 
limitations of the proposed framework.  The 
implementation also aims at: (i) investigating the 



feasibility of implementing a real-time proactive 
performance management system running over a Java-
based middleware using the mobile agent paradigm; and 
(ii) verifying the suitability of the proposed rerouting 
architecture, which is based on the same paradigm, to 
reroute traffic flows through less congested virtual circuits 
on an Multiprotocol Label Switching (MPLS) network 
infrastructure.  

This paper is organized as follows: Section 2 presents 
the key concepts necessary to understand the mobility and 
distributed aspects of active technology for network 
systems; Section 3 introduces the proposed proactive 
management architecture; Section 4 describes the 
proactive rerouting architecture; Section 5 points out the 
tests performed over the implemented system and 
analyses the results and, finally, section 6 reports some of 
the conclusions of this paper.   

2. Key concepts 
The following key concepts were used as a basis for 

the framework proposed in this paper.  

Active Technology 

Active networks [4] and mobile agents [5] use 
computational resources inside and/or at the borders of 
the network to execute software on demand.  The main 
difference between them is that active networks use 
(network layer) processing for packet forwarding while 
mobile agents execute as applications.  Although the 
concepts of these two technologies come from different 
research communities to solve different problems, they 
overlap, and the active technology term has been used to 
specify one, another or both.  

Virtual Circuits and Rerouting 

Virtual circuit driven networks (ATM, Frame Relay 
and MPLS) stem on swapping of labels to forward 
packets.  In particular, MPLS defines virtual circuits, 
known as Label Switched Paths (LSPs), over 
connectionless environments such as IP networks in order 
to support connection-oriented like services. Rerouting in 
virtual circuit networks is defined as the set of operations 
necessary for redirecting pre-established flows through 
redundant routes. Rerouting is generally employed to: (i) 
support administrative policies, (ii) to establish traffic 
profiles and (iii) to increase the degree of fault tolerance 
[6]. 

Traditional rerouting approaches are reactive in nature 
since rerouting actions are only taken after a fault is 
detected. In contrast, proactive rerouting must be able to 
find new paths before faults occur. Such proactive 
operations lead to significant reduction of rerouting 
latency. Basically, the proactive rerouting scheme consists 
of three set of operations: (i) identification of alternative 
paths: (ii) generation of local identifiers (labels) on all 

nodes that belong to all virtual circuits just discovered and 
(iii) redirection of the flow by replacing the current label.  

In the context of this work, faults take place when 
QoS constraints are not met due to lack of resources on 
the current virtual circuit of an application flow. There are 
two approaches for redirecting flows proactively: plain 
and partial rerouting. Plain rerouting aims at replacing the 
whole virtual circuit of a pre-established flow with a new 
redundant virtual circuit, while the partial one only 
replaces a section of the current virtual circuit.  

The partial approach presumes there is a section that 
must be identified in the current virtual circuit. This 
section, the critical section, is the one, which is the 
bottleneck of the virtual circuit considering the QoS 
metric relevant to the flow (e.g., lowest bandwidth, higher 
delay). Preliminary results establish an exponential 
relationship between path length in hops and path 
computation time, justifying the adoption of partial 
rerouting [7]. The idea behind partial rerouting is to 
restrain the searching area for alternative paths so that the 
number of nodes and links involved in rerouting 
operations becomes small. The final result is a lower 
processing time and consequently, lower rerouting 
latency. Moreover resource consumption in rerouting 
tasks is also reduced turning the scheme more scalable. 

3. Proactive Management Architecture  
In an active technology environment, manageable 

elements (workstations and the network devices) will 
have no more than basic downloading capabilities, 
allowing them to pack specific functionalities on demand. 
These on demand applications can be used to enable 
advanced and local processing of management 
information, reducing substantially the reaction time and 
the network management extra traffic (traditional polling 
of management information can be practically 
eliminated). 

One critical disadvantage of centralized management 
approaches (e.g., SNMP) is the difficulty to get precise 
timing measures [8]. Sending a mobile agent, or an active 
application, permit to effectuate and evaluate the 
measures locally (reacting, whenever is necessary) 
without needs of generating extra network traffic. 

Additionally, local applications can calculate 
variations on critical parameters and detect their behavior 
tendency.  Actions can be executed locally or notifications 
can be sent to management servers when appropriate 
limits of these tendencies were disrespected. With these 
tendencies detected, it is possible not only to estimate 
when minimum limits of QoS will be reached but also, 
depending on the amount of time remaining, to take 
actions to try to revert the malicious trend or, at least, to 
try to minimize the consequences of QoS failures, if they 
occur. By this way, a proactive performance management 
can be implemented.  A proactive management can be 

 



realized only if it is possible to execute automatic actions. 
Active technology is a good way to get this. 

In spite of the flexibility offered by active technology, 
efficiency and efficacy of the real time monitoring and 
automatic execution of actions can be questioned. Active 
technology has to use a mobility infrastructure and this 
will introduce more layers of processing. The use of a 
platform independent language, as Java, will further 
increase another layer. Test results show that this 
management scenario is possible using hardware that is 
not so powerful. 

The work described in this paper is based on the 
AGAD (Distributed Management Architecture using 
Active Technology) developed at the Federal University 
of Rio de Janeiro (UFRJ), Brazil. AGAD was extended to 
provide proactive performance management, and 
validated by means of one of its potential applications: 
rerouting of flows. 

Figure 1 presents AGAD architecture, which provides 
necessary infrastructure for a distributed management of 
workstations, their applications, services and network 
elements. Master Manager (MM) is a fixed application 
and is responsible for managing a set of domains, each of 
them managed by a Domain Manager (DM). DMs are 
created, sent to their domains and monitored by MM. A 
domain is a set of network elements, workstations, 
applications and services supervised by the same 
administrative authority. DM creates and sends Inspectors 
to the elements to be managed. In the case explored in this 
paper, Inspectors collect QoS parameter data locally, 
analyze them as required and start actions or send 
notifications to the DM. Inspectors use whatever is 
available locally, as MIBs or interfacing directly with 
operating systems to get necessary data. Inspectors were 
developed as dynamically configurable, being updated 
during their execution, if it is required. 
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Figure 1: Overview of AGAD 

When necessary, DM, after analyzing notifications 
received from Inspectors, sends Specialists to the 
elements where they are necessary to start specific actions 
to maintain QoS parameters in their required levels. 
Examples of these specific actions are changing of 
scheduling policies, reconfiguring buffers utilization, 

interacting with an adaptive application, changing a 
protocol or simply delivering a message to a rerouting 
system. 

As mentioned before, this paper focuses on the 
performance management capabilities (PM) provided by 
AGAD. PM has two orthogonal objectives: (i) to provide 
appropriated QoS levels for users, and (ii) to enable 
allocation of resources, which maximizes the utilization of 
the managed workstations and network elements. A 
Performance Management System, as organized by 
Pacifici [9] and showed in Figure 2, acts only based on 
control parameters. These are monitored and, when 
necessary, set. There are no interaction between PM and 
Real Time Traffic Control, which is a set of mechanisms 
responsible for controlling specific functionalities, like 
scheduling, rerouting, allocation of memory, protocols, 
admission control, among others. 

ManagerManager
PerformancePerformance
ManagementManagement

SystemSystem

Real TimeReal Time
TrafficTraffic ControlControl
SystemSystem CompuationalCompuational

ResourcesResources

CommunicationCommunication
ResourcesResources

Monitor

Control

Interaction
ManagerManager

PerformancePerformance
ManagementManagement

SystemSystem

Real TimeReal Time
TrafficTraffic ControlControl
SystemSystem CompuationalCompuational

ResourcesResources

CommunicationCommunication
ResourcesResources

Monitor

Control

Interaction

 
Figure 2: Pacifici Model 

During performance management, Inspectors collect 
data from managed elements and analyze the variation of 
the monitored parameters. These could be from 
applications, operating system, communication services, 
protocols or devices. To detect QoS failures tendencies, 
variations are compared with pre-configured limits. In 
case of disrespect of these pre-configured limits, 
Tendency Alarms are sent to Domain Manager, which 
analyzes these alarms and extrapolates theses variations in 
order to define which actions are to be started and in 
which elements these operations will be carried out. In 
this way, it is possible to revert the tendency or to 
minimize their consequences. 

A proactive performance management can be used to 
try to prevent or to minimize consequences of QoS 
failures in many situations. Adaptive applications can be 
notified to change media formats without compromising 
quality of presentation. By this way, QoS requirements 
can be reduced. 

4. Proactive Rerouting Architecture  
The rerouting functionalities were decomposed into 

three agents to make their code size smaller and, 
therefore, reduce the installation and migration latency 
requirements.  

The IngressNodeAgent (INA) once installed in the 
ingress node of the virtual circuit starts its rerouting 
management tasks. It also has the responsibility to create 
the two other agents and to handle external messages 
(e.g., from the Proactive Management System). The 
PathNodeAgent (PNA) identifies the intermediary nodes 

 



of the virtual circuit to install its replicas. Upon reaching 
the target nodes, PNA replicas start to monitor the local 
intermediary node states about relevant QoS parameters.   

The SearchRouteAgent (SRA) is responsible for 
searching new paths around the critical section of the 
virtual circuit. SRA must also be able to redirect the flow 
just when it receives a rerouting request indicating a trend 
to a QoS failure.  

The relationship among the rerouting agents, as well 
as between the Rerouting Architecture and an external 
system, is covered by five distinct phases. Figure 3 shows 
graphically these relationships. 
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Figure 3: Rerouting Phases 

The operations executed by these components are 
triggered by two external events: (i) beginning of an 
application flow monitoring and (ii) detection of a trend to 
a QoS fault. 

Once INA agent captures an external event indicating 
that a flow is being monitored, all phases, except RF 
phase, are executed sequentially.  Theses phases are 
considered proactive because their operations are started, 
or finished, before external rerouting request event is 
generated, signaling a QoS Failure or a tendency of QoS 
fault. RF phase is reactive since its operations are started 
afterwards.  By executing most of the phases in advance, 
it is possible to lessen the rerouting latency. 

Agents Installation (AI) and Virtual Circuit 
Monitoring (VCM) Phases 

Figure 4 describes all main operations involved in 
these phases. This figure shows, as an example, a 5-hop-
length virtual circuit in which the critical section is 
formed by nodes C, D and E. The dotted arrows refer to 
the VCM phase operations. 
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Figure 4: AI and VCM Phases 

As soon as INA agent starts, it creates PNA agent 
(operation 1) which travels (operation 2) to the 
downstream node (node B) in the virtual circuit. On node 

B, PNA agent clones itself. The PNA clone identifies the 
next hop and travels to it (operation 4). These operations 
(operations 5, 6 and 7) are repeated until one of the PNA 
copies reaches the egress node (node F), initiating the 
VCM phase.  The PNA clone hosted in the egress node 
(node F) sends periodically the local QoS parameters to 
the PNA clone in the upstream node (operation 8). On the 
upstream node (node E), this QoS information is 
aggregated to the local one and sent to the next upstream 
node. In this way, during the VCM phase, the QoS 
information of all nodes is delivered to INA agent 
(operations 9 – 12).  INA agent uses this QoS information 
to figure out the critical section (nodes C, D and E) of the 
virtual circuit. At this time, INA agent while creating 
SRA agent, hands over to it the address of the first node 
of the critical section (operation 13). SRA agent just 
travels to the first node of the critical section (node C) and 
begins executing to finish the AI phase. 

INA agent also implements a triggering function to 
diminish the side effects produced by the position 
changing of the critical section. Due to traffic patterns, as 
well as load unbalance on network nodes and links, it is 
expected that the position of the critical section changes 
over time. The triggering function only allows to create a 
new SRA agent whenever three consecutives critical 
section calculations lead to the same results.  

Alternative Path Searching (APS) and Alternative 
Path Monitoring (APM) Phases 

APS phase starts when SRA agent begins to execute 
its first instruction on the first node of the critical section, 
and ends as soon as the last replica reaches the last node 
of the critical section, pointing out that the last alternative 
path was discovered. The description of this phase is 
graphically presented in Figure 5. This figure is similar to 
Figure 4, including two alternative paths in the searching 
area around the critical section. The dotted arrows 
represent the alternative path update messages. 
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Figure 5: APS and APM phases 

SRA agent interacts with the local operating system 
(node C) to obtain all active interfaces through which 

 



SRA clones are launched next. These operations are 
carried out until SRA agent copies arrive at the last node 
of the critical section (node E). The adopted scheme for 
searching alternative paths around the critical section was 
flooding.  To limit the searching area, which encompasses 
the nodes and links involved in searching tasks, a specific 
private variable was incorporated in the SRA agent code. 
This variable specifies the maximum alternative path 
length.  For every hop, this variable is decremented and if 
a zero value is reached, the SRA stops running. Hence, 
the flooding of SRA agent is restricted to the searching 
area.  
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Figure 6: RF Phase Early and on-demand approach 

The first SRA agent replica to host in the last node of 
the critical section begins to send update messages (UPM 
1) to the upstream alternative path node. After that, as 
new replicas arrive through the other interfaces, they 
transfer the incoming interface (operation 3’) identifier to 
the first replica and stop running (operation 4’) 
immediately. Then, update messages will also be sent 
through this new interface (UPM 1’).  

These operations are related to the creation and 
assignment of labels on the alternative path that was 
selected previously (operation 2). It is worth noting that 
while on the former approach the labels were assigned for 
all alternative paths discovered in the searching area, on 
the latter, labels were only consumed for the nodes of the 
chosen alternative path. 

APM phase consists of sending messages with the 
local QoS information of the alternative paths to the SRA 
agent hosted in the first node of the critical section (node 
C). These operations are similar to VCM phase. The SRA 
agent on node C builds an information base to choose the 
best alternative path on receipt of a rerouting message.  

5. Implementation and Tests 
The platforms for development and testing of the 

prototypes were PC based hardware with Linux as the 
underling OS. Java (JDK- version 1.3.1) was the language 
adopted for coding the components - agents - of both 
architectures. A mobile infrastructure called µCode [10] 
was incorporated to the Java virtual machines of the test 
platforms. This infrastructure provides a computing 
environment for execution of mobile threads. According 
to Fuggeta’s taxonomy [11], µcode furnishes weak 
mobility because agent data state remains unaltered after 
migration while the execution state is lost. 

Redirecting Flow (RF) Phase 

In RF phase, operations are triggered after an external 
rerouting request reaches the INA agent in the ingress 
node. This is the reason why this phase is said reactive. 
The time constraint is an issue because high latencies in 
this phase can jeopardize application performance. 
Nevertheless, another concern that is tightly coupled with 
RF phase latency is the label assignment on the alternative 
path nodes. If labels are assigned during the proactive 
APM phase, RF phase latency is reduced at the cost of a 
higher number of labels consumed. That is, in APM 
phase, labels on all nodes in the searching area must be 
assigned in advance. Depending on the number of nodes, 
the degree of redundancy of the searching area, number of 
flows being rerouted and number of virtual circuits, the 
label spaces of searching area nodes may be exhausted. 
Hence, RF phase can adopt two possible approaches: the 
early or on-demand label assignment.  

Perl scripts were written to provide the means for the 
interaction between the rerouting agents and OSes.  IP 
addresses and labels are information that must be 
available to the rerouting agents as well as the support for 
reconfiguring routing and forwarding tables on the fly. 
The rerouting agents were tailored for redirecting flows 
with bandwidth and latency constraints on a MPLS-IP 
network infrastructure.  

The management and rerouting tests aim at verifying 
whether the proposed proactive schemes working together 
in the same framework are able to avoid QoS failures. 
Besides, it will be possible to conclude the feasibility of 
Java and µCode as the underling mobile environment. Figure 6 shows RF phase operations for both 

approaches. SRA agent located at the first node of the 
critical section (node C) chooses the best alternative path 
and redirects the flow by changing the labels (operation 6) 
after having received a rerouting message from INA agent 
(operation 1). That is, on early assignment approach, 
operations 2 through 5 are not executed. After operation 2 
is finished, SRA jumps directly to operation 6. Operations 
2 through 5 are needed for the on-demand label 
assignment approach. 

5.1 Proactive Management Tests 
In the first test, it was measured how much time was 

spent for the Specialist to get ready to start some action in 
a managed element. Figure 7 presents an overview of the 
test.  

Inspector gets measures from the managed element 
and detects a tendency of QoS failure in a parameter. 
Then Inspector prepares and sends, via Java socket a 

 



Tendency Alarm to its Domain Manager. DM analyses 
this alarm and decides which Specialist to send to which 
managed element (in this case, the same one of the 
Inspector). The Specialist is sent by µCode only if the 
Specialist code is not present in the class space of the 
destination element otherwise a reference is forwarded. 
After that, the Specialist is instantiated and put to run. All 
processing phases are represented in Figure 8. 
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Figure 7: Overview of the first test 
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Figure 8: Phases of the test 

There could be as much as four network transits 
(alarm sending, Specialist type notification, Specialist 
code request and Specialist code shipment) and all layers 
of processing showed in Figure 7.  The alarm analysis in 
DM was not accomplished in this test. This analysis may 
require reasonable complexity computations, once 
techniques of artificial intelligence and/or access to a 
database with the baseline of the network may be needed. 
Although, DM is unique for an entire domain, as a 
corporation network, for instance, it could be executed in 
a workstation with enough processing capacity. The 
results are presented in Table 1. 

Table 1: Results of the first test 

 Subtest 
1 

Subtest 
2 

Subtest 
3 

Mean: 136.80 42.23 433.40 
Adjust to Normal (%): 99.99 95.48 95.30 
Standard Deviation: 7.24 5.39 6.27 
Conf interval of 95%: ±2.59 ±1.93 ±2.24 
 
In subtest 1, the Specialist code size was 1 KB and 

systems were rebooted to eliminate the presence of code 
in cache. That is, at all times, the transmission of the code 
was required. In subtest 2, systems were not rebooted, so 
codes were in cache and not retransmitted. In subtest 3, 
systems were rebooted and Specialist had 10 KB of byte 
codes. 

The worst case – Specialist with 10 KB without cache 

– required 433 ms to start an action at the managed 
element. If network delay was 120 ms, a very large delay 
for a intra domain network, 480 ms have to be added, 
totalizing 913 ms. These numbers indicate that 1 second is 
a reasonable limit between detection of a Tendency Alarm 
and starting an action. 

The second test consists of monitoring delays in a 
multimedia application with a server and a client 
streaming a video with 400 Kbps. The network used 
(shown in Figure 9) is from a university school with 
twelve different departments and is a typical network 
where multimedia applications will be commonly used in 
the future.  
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Figure 9: Network infrastructure for test 2 

Delay was monitored at 0,2 Hz and the limits set to 
generate a Tendency Alarm by the specialist was two: (i) 
when accumulated delay, not considering the number of 
samples, increase 40 ms, and (ii) when, in one interval 
between two samples, delay increase 35 ms. It was 
considered that a delay of 90 ms causes a QoS failure. The 
measures of delay were repeated for weeks and the most 
significant two-hour (14 to 16h) period for our analysis 
was selected. This is shown in Figure 10. During other 
periods the traffic of the network was extremely light, 
being difficult to get QoS failures. The objective of the 
test is to measure the efficacy of detecting QoS failure 
tendency. Results are summarized in Table 2. 

Table 2: Results of test 2 
Fact Qtty  

Two hour samples: 720  
QoS failures: 49 100 % 

(Reference) 
QoS failures preceded of alarms: 24 49.0 % 

Alarms generated 5s before 
failure: 

10 20.4 % 

Alarms generated 10s before 
failure: 

7 14.3 % 

Alarms generated 15s before 
failure: 

5 10.2 % 

Alarms generated 10s before 
failure: 

2 4.0 % 

Alarms generated at the failure: 15 30.6 % 
Failures not preceded by alarms: 8 16.3 % 

 
Among 720 samples, 49 presented latencies above 90 ms.. 
A sequence of adjacent samples with delay 90 ms or 
superior is considered as 1 time, once the increase of the 
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Figure 10: 720 Delay samples and alarms for 2 hours (14-15h above, 15-16h below) 

variation causes QoS failure and not the maintaining of a 
high delay without abrupt variation. Of these 49 failures, 
24 of them were preceded of Tendency Alarms within 5 to 
20 seconds before they occur.  That is, 49% of efficacy. 
15 of the failures were detected only at the sample they 
occur, that is, without any anticipation. These are inutile 
alarms. In 8 failures there wasn’t any alarm generated. 
This happened because delay was high at the time, 
varying little, but above and below 90 ms. 24 of the 
Tendency Alarms generated were false. They were 
generated but no QoS failure occurred within 20 s after 
the alarm. 

In this test there were no actions started by specialists. 
These actions could have prevented some of the QoS 
failures 

5.2 Proactive Rerouting Tests  
A prototype was implemented to verify if the proposed 

proactive rerouting architecture is able to reroute pre-
established flows before the occurrence of a QoS fault. In 
the context of this article, the CR phase latency must be 
confronted with the time that the proactive management 
detects tendencies of QoS faults in advance. The total 
latency of the proactive rerouting phases, except CR one, 
is also important because it establishes the minimum 
lifetime of flows, which can be rerouted. In other words, 
flows can be rerouted only if their lifetimes are higher 
than the total latency of all these phases. This latency is 
the time elapsed between the installation of INA agent in 
the ingress node and SRA agent receipt of the first update 
massage, indicating that the first alternative path was 
found out.  

Table 3: Test Results – Proactive Phases (ms) 
AI phase APM phase 

Values 1 2 3 

VCM 
pha- 
se 

APS 
phase 1 2 

Avg 821 58
0 321 33.5 326 27.9 74.7 

STD 41 20 4.58 0.35 15 0.71 3.89 
Conf 95% 11.4 5.4 1.3 0.1 4.2 0.2 1.1 

 
To measure phase latencies, five tests were 

established. These tests correspond to the rerouting phases 

identified previously.  As phase latencies depend on 
virtual circuit (VC) and alternative path (AP) lengths, 
each test was also divided into subtests.  By measuring 
subtest latencies, it is possible to derive the relationship 
between the total rerouting latency and the virtual circuit 
length as well as the alternative path length.  

Tables 3 and 4 summarize the test results presenting 
the values measured. K6-II/500Mhz machines with Linux 
Red Hat 7.2 and a patched Kernel version 7.4.19 were 
used as MPLS routers. 

Table 4: Test Results – Reactive Phase (ms) 
RF phase 

RF 2 RF 3 Values RF 1 
1 3 A C 

Avg 4 4 90 4.5 122 
STD 0 0 2.87 0.07 3.95 

Conf 95% 0 0 0.8 0.02 1.09 

 
The subtests underlined in Table 3 are those that 

should be executed as many times as the number of virtual 
circuit hops while the bolded ones are repeated a number 
of times equal to the number or alternative path hops. 
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Figure 11: Min time for rerouting - Early approach 

Computing the values in Table 3 in accordance with 
the length dependency nature of each subtest, the 
derivation of the expressions and graphics in Figures 11 
and 12 are straightforward. Figures 11 and 12 present the 
results considering the early and on-demand label 
assignment approaches respectively. 
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Figure 12: Min time rerouting - On-demand approach 

To make clear the lifetime flow limitation, Figure 11 
shows that it is only possible to reroute flows with 
lifetime longer than 11.9 s for alternative paths lengths 
shorter than 4 hops and virtual circuit length equals to 14 
hops. Theses graphics also show that the minimum time 
for rerouting (minimum flow lifetime) is lower when on-
demand label assignment scheme is adopted. In this case, 
the RF phase latency increases. 

RF phase latency can also be calculated with the 
values in Table 4. For on-demand label assignment 
approach, this latency is equal to the sum of tests 1 and 2 
latency values, 98 ms.. Early label assignment scheme 
makes RF phase latency be dependent on alternative path 
length due to the additional operations needed (as shown 
in Figure 13).  
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Figure 13: RF phase latency 

To reroute a flow (RF phase), it is necessary 834.5 ms 
for a 5-hop-length alternative path. The virtual circuit 
length does not impact the rerouting time if the partial 
proactive rerouting approach is adopted.  Hence, as the 
searching area size limits the alternative path length, it 
could be adjusted accordingly. The searching area size is 
a trade-off between the probability of finding alternative 
paths and the rerouting latency. Finally, the results show 
that rerouting flows proactively in a partial manner is 
feasible since all latency values were far below the time 
the proactive management prototype is able to detect 
tendencies of QoS failures.  

6. Conclusions  
This paper introduced proactive management and 

rerouting architectures, which work together, establishing 
a framework to enhance the underling network 
functionalities for furnishing QoS to critical applications 
such as real-time multimedia. 

Besides the presence of many software layers, real 
time proactive performance management is already 
possible. Nevertheless, further studies are necessary to 
establish the limits of the proposed scheme. 

The proactive rerouting architecture was presented as 
a tool for management systems to redirect critical 
application flows through alternatives paths in a trial to 
revert the QoS fault tendency. The partial rerouting was 
highlighted and its benefits as well as its shortcomings 
described. Test results of the prototypes and the 
confrontation of both demonstrated that it worth devoting 
more effort in investigating theses approaches for 
delivering QoS. The conception of the proposed 
framework based strongly on the proactive principle 
reveals the authors’ belief that the apparent randomness of 
network traffic is tractable. In addition, this randomness 
may be managed on network design and management 
levels in such a degree that, in the future, this framework 
could help providing satisfactory QoS over a 
connectionless environment.  
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