
A Proactive Management and Rerouting Framework for QoS Critical
Distributed Applications Using Active Technology

Reinaldo de B. Correia1
reinaldo@posgrad.nce.ufrj.br

Edmundo L.Cecilio1

cecilio@ime.eb.br
Luci Pirmez1
luci@nce.ufrj.br

Luiz F. Rust Carmo1,2

rustlf@utrc.utc.com
Luiz F. H. Bacellar2
bacellar@utrc.utc.com

1 Núcleo de Computação Eletrônica
Universidade Federal do Rio de Janeiro

P.O.Box 2324, 20001-970
Rio de Janeiro – RJ, Brasil

2 United Technologies Research Center
411 Silver Lane

M/S 129-48
East Hartford, CT – 06108, USA

Abstract

In the past few years the massive deployment of real-
time multimedia services has motivated the research
community to investigate new quality of service (QoS)
mechanisms to overcome the limitations of IP networks.
Since assured levels of service must be provided, these
mechanisms should interact flexibly with network
performance management systems. When such
integration is achieved, it is possible to trigger actions
effectively to prevent QoS failures and simultaneously to
balance network load. Mechanisms for rerouting traffic
flows of QoS critical applications may be employed to
support performance management systems in satisfying
the application requirements. In addition, proactive
actions could be taken before applications are affected by
QoS failures. To meet these goals, a proactive network
management and rerouting framework is introduced. The
proposed framework is based on active technology and
aims at providing the means needed for establishing new
routes with sufficient resources for traffic flows of QoS
critical distributed applications. A system prototype using
the proposed framework was implemented and test results
show that its deployment is feasible considering the
hardware processing capability available today.

1. Introduction
A precise, efficient, and rapid network management

system is the key mechanism to guarantee the specific
quality of service (QoS) levels needed for distributed
multimedia applications. In addition to being distributed
and platform independent, this mechanism must have the
capacity to be easily updated and yet to be flexible enough
to promptly assimilate the introduction of new
functionalities. Another desirable characteristic is to be
proactive, taking corrective actions prior to QoS failures.
In other words, the network management system should
detect the QoS reduction trend and either try to reverse it,

or minimize the user perception when the network fails to
provide the required QoS levels. This management
system should also be extended from network to
workstations, communication services and applications.

Recent research has shown that Active Technology
offers the flexibility and distribution assets required for
management systems of the future [1]. The key concept
of active technology is allowing software to be spread on
demand in the network and at its border. The high degree
of flexibility achieved in such a distributed processing
environment allows new functionalities to be deployed to
fulfill application QoS needs.

Rerouting of traffic flows through the network is
being considered as an important component to improve
the availability and response time of distributed systems.
Since the convergence time of IP routing algorithms is
usually very high [2] and is dependent on network size,
rerouting real-time multimedia traffic flows is unfeasible.
To address this problem, virtual circuit technologies such
as the Multiprotocol Label Switching (MPLS) framework
[3] are being deployed on IP networks to provide for the
efficient designation, routing, forwarding, and switching
of traffic flows through the network. These technologies
are critical to increase the probability that application QoS
needs will be satisfied by the network infrastructure.

This paper proposes a distributed architecture for
network management that, besides using active
technology, is totally platform independent. A proactive
rerouting architecture is also introduced. It uses the
proposed network management infrastructure to avoid
QoS failures by redirecting application traffic flows
through redundant routes.

A system based on these two proposed architectures
has been implemented and used, along with a distributed
multimedia system, to show the advantages and
limitations of the proposed framework. The
implementation also aims at: (i) investigating the

feasibility of implementing a real-time proactive
performance management system running over a Java-
based middleware using the mobile agent paradigm; and
(ii) verifying the suitability of the proposed rerouting
architecture, which is based on the same paradigm, to
reroute traffic flows through less congested virtual circuits
on an Multiprotocol Label Switching (MPLS) network
infrastructure.

This paper is organized as follows: Section 2 presents
the key concepts necessary to understand the mobility and
distributed aspects of active technology for network
systems; Section 3 introduces the proposed proactive
management architecture; Section 4 describes the
proactive rerouting architecture; Section 5 points out the
tests performed over the implemented system and
analyses the results and, finally, section 6 reports some of
the conclusions of this paper.

2. Key concepts
The following key concepts were used as a basis for

the framework proposed in this paper.

Active Technology

Active networks [4] and mobile agents [5] use
computational resources inside and/or at the borders of
the network to execute software on demand. The main
difference between them is that active networks use
(network layer) processing for packet forwarding while
mobile agents execute as applications. Although the
concepts of these two technologies come from different
research communities to solve different problems, they
overlap, and the active technology term has been used to
specify one, another or both.

Virtual Circuits and Rerouting

Virtual circuit driven networks (ATM, Frame Relay
and MPLS) stem on swapping of labels to forward
packets. In particular, MPLS defines virtual circuits,
known as Label Switched Paths (LSPs), over
connectionless environments such as IP networks in order
to support connection-oriented like services. Rerouting in
virtual circuit networks is defined as the set of operations
necessary for redirecting pre-established flows through
redundant routes. Rerouting is generally employed to: (i)
support administrative policies, (ii) to establish traffic
profiles and (iii) to increase the degree of fault tolerance
[6].

Traditional rerouting approaches are reactive in nature
since rerouting actions are only taken after a fault is
detected. In contrast, proactive rerouting must be able to
find new paths before faults occur. Such proactive
operations lead to significant reduction of rerouting
latency. Basically, the proactive rerouting scheme consists
of three set of operations: (i) identification of alternative
paths: (ii) generation of local identifiers (labels) on all

nodes that belong to all virtual circuits just discovered and
(iii) redirection of the flow by replacing the current label.

In the context of this work, faults take place when
QoS constraints are not met due to lack of resources on
the current virtual circuit of an application flow. There are
two approaches for redirecting flows proactively: plain
and partial rerouting. Plain rerouting aims at replacing the
whole virtual circuit of a pre-established flow with a new
redundant virtual circuit, while the partial one only
replaces a section of the current virtual circuit.

The partial approach presumes there is a section that
must be identified in the current virtual circuit. This
section, the critical section, is the one, which is the
bottleneck of the virtual circuit considering the QoS
metric relevant to the flow (e.g., lowest bandwidth, higher
delay). Preliminary results establish an exponential
relationship between path length in hops and path
computation time, justifying the adoption of partial
rerouting [7]. The idea behind partial rerouting is to
restrain the searching area for alternative paths so that the
number of nodes and links involved in rerouting
operations becomes small. The final result is a lower
processing time and consequently, lower rerouting
latency. Moreover resource consumption in rerouting
tasks is also reduced turning the scheme more scalable.

3. Proactive Management Architecture
In an active technology environment, manageable

elements (workstations and the network devices) will
have no more than basic downloading capabilities,
allowing them to pack specific functionalities on demand.
These on demand applications can be used to enable
advanced and local processing of management
information, reducing substantially the reaction time and
the network management extra traffic (traditional polling
of management information can be practically
eliminated).

One critical disadvantage of centralized management
approaches (e.g., SNMP) is the difficulty to get precise
timing measures [8]. Sending a mobile agent, or an active
application, permit to effectuate and evaluate the
measures locally (reacting, whenever is necessary)
without needs of generating extra network traffic.

Additionally, local applications can calculate
variations on critical parameters and detect their behavior
tendency. Actions can be executed locally or notifications
can be sent to management servers when appropriate
limits of these tendencies were disrespected. With these
tendencies detected, it is possible not only to estimate
when minimum limits of QoS will be reached but also,
depending on the amount of time remaining, to take
actions to try to revert the malicious trend or, at least, to
try to minimize the consequences of QoS failures, if they
occur. By this way, a proactive performance management
can be implemented. A proactive management can be

realized only if it is possible to execute automatic actions.
Active technology is a good way to get this.

In spite of the flexibility offered by active technology,
efficiency and efficacy of the real time monitoring and
automatic execution of actions can be questioned. Active
technology has to use a mobility infrastructure and this
will introduce more layers of processing. The use of a
platform independent language, as Java, will further
increase another layer. Test results show that this
management scenario is possible using hardware that is
not so powerful.

The work described in this paper is based on the
AGAD (Distributed Management Architecture using
Active Technology) developed at the Federal University
of Rio de Janeiro (UFRJ), Brazil. AGAD was extended to
provide proactive performance management, and
validated by means of one of its potential applications:
rerouting of flows.

Figure 1 presents AGAD architecture, which provides
necessary infrastructure for a distributed management of
workstations, their applications, services and network
elements. Master Manager (MM) is a fixed application
and is responsible for managing a set of domains, each of
them managed by a Domain Manager (DM). DMs are
created, sent to their domains and monitored by MM. A
domain is a set of network elements, workstations,
applications and services supervised by the same
administrative authority. DM creates and sends Inspectors
to the elements to be managed. In the case explored in this
paper, Inspectors collect QoS parameter data locally,
analyze them as required and start actions or send
notifications to the DM. Inspectors use whatever is
available locally, as MIBs or interfacing directly with
operating systems to get necessary data. Inspectors were
developed as dynamically configurable, being updated
during their execution, if it is required.

AAAA

AA AA

AA
AA

DMDM MMMM

II
II

II

EE
EE

II

ComunicaçãoComunicação
MM: Master Manager MM: Master Manager Active RouterActive Router
DM: Domain ManagerDM: Domain Manager
I: Inspector I: Inspector Active SwitchActive Switch--routerrouter
E: E: SspecialistSspecialist

Legacy RouterLegacy Router

AA

AA

DomainDomain

AAAAAAAA

AAAA AAAA

AAAA
AAAA

DMDM MMMM

II
II

II

EE
EE

II

ComunicaçãoComunicação
MM: Master Manager MM: Master Manager Active RouterActive Router
DM: Domain ManagerDM: Domain Manager
I: Inspector I: Inspector Active SwitchActive Switch--routerrouter
E: E: SspecialistSspecialist

Legacy RouterLegacy Router

AAAA

AAAA

DomainDomain

Figure 1: Overview of AGAD

When necessary, DM, after analyzing notifications
received from Inspectors, sends Specialists to the
elements where they are necessary to start specific actions
to maintain QoS parameters in their required levels.
Examples of these specific actions are changing of
scheduling policies, reconfiguring buffers utilization,

interacting with an adaptive application, changing a
protocol or simply delivering a message to a rerouting
system.

As mentioned before, this paper focuses on the
performance management capabilities (PM) provided by
AGAD. PM has two orthogonal objectives: (i) to provide
appropriated QoS levels for users, and (ii) to enable
allocation of resources, which maximizes the utilization of
the managed workstations and network elements. A
Performance Management System, as organized by
Pacifici [9] and showed in Figure 2, acts only based on
control parameters. These are monitored and, when
necessary, set. There are no interaction between PM and
Real Time Traffic Control, which is a set of mechanisms
responsible for controlling specific functionalities, like
scheduling, rerouting, allocation of memory, protocols,
admission control, among others.

ManagerManager
PerformancePerformance
ManagementManagement

SystemSystem

Real TimeReal Time
TrafficTraffic ControlControl
SystemSystem CompuationalCompuational

ResourcesResources

CommunicationCommunication
ResourcesResources

Monitor

Control

Interaction
ManagerManager

PerformancePerformance
ManagementManagement

SystemSystem

Real TimeReal Time
TrafficTraffic ControlControl
SystemSystem CompuationalCompuational

ResourcesResources

CommunicationCommunication
ResourcesResources

Monitor

Control

Interaction

Figure 2: Pacifici Model

During performance management, Inspectors collect
data from managed elements and analyze the variation of
the monitored parameters. These could be from
applications, operating system, communication services,
protocols or devices. To detect QoS failures tendencies,
variations are compared with pre-configured limits. In
case of disrespect of these pre-configured limits,
Tendency Alarms are sent to Domain Manager, which
analyzes these alarms and extrapolates theses variations in
order to define which actions are to be started and in
which elements these operations will be carried out. In
this way, it is possible to revert the tendency or to
minimize their consequences.

A proactive performance management can be used to
try to prevent or to minimize consequences of QoS
failures in many situations. Adaptive applications can be
notified to change media formats without compromising
quality of presentation. By this way, QoS requirements
can be reduced.

4. Proactive Rerouting Architecture
The rerouting functionalities were decomposed into

three agents to make their code size smaller and,
therefore, reduce the installation and migration latency
requirements.

The IngressNodeAgent (INA) once installed in the
ingress node of the virtual circuit starts its rerouting
management tasks. It also has the responsibility to create
the two other agents and to handle external messages
(e.g., from the Proactive Management System). The
PathNodeAgent (PNA) identifies the intermediary nodes

of the virtual circuit to install its replicas. Upon reaching
the target nodes, PNA replicas start to monitor the local
intermediary node states about relevant QoS parameters.

The SearchRouteAgent (SRA) is responsible for
searching new paths around the critical section of the
virtual circuit. SRA must also be able to redirect the flow
just when it receives a rerouting request indicating a trend
to a QoS failure.

The relationship among the rerouting agents, as well
as between the Rerouting Architecture and an external
system, is covered by five distinct phases. Figure 3 shows
graphically these relationships.

AI
APS

VCM

APM

RF

extenal flow monitoring indication

Flow Lifetime
External Rerouting Request

Triggering Function
execution time

AI: Agents Instalation
VCM: Vitulal Circuit Monitoring
APS: Alternative Path Searching
APM: Alternative Path
Monitoring
RF: Redirecting Flow

Figure 3: Rerouting Phases

The operations executed by these components are
triggered by two external events: (i) beginning of an
application flow monitoring and (ii) detection of a trend to
a QoS fault.

Once INA agent captures an external event indicating
that a flow is being monitored, all phases, except RF
phase, are executed sequentially. Theses phases are
considered proactive because their operations are started,
or finished, before external rerouting request event is
generated, signaling a QoS Failure or a tendency of QoS
fault. RF phase is reactive since its operations are started
afterwards. By executing most of the phases in advance,
it is possible to lessen the rerouting latency.

Agents Installation (AI) and Virtual Circuit
Monitoring (VCM) Phases

Figure 4 describes all main operations involved in
these phases. This figure shows, as an example, a 5-hop-
length virtual circuit in which the critical section is
formed by nodes C, D and E. The dotted arrows refer to
the VCM phase operations.

INA

PNA PNA PNA PNA PNA PNA

SRA

1
SRA

23 4 5 6

891011

12
13

7

15
14

Ingress Node
Egress node

Intermediary nodes

Critical Section

First node of the Critical
Section

Last node of Critical
Section

A

B C D E F

Figure 4: AI and VCM Phases

As soon as INA agent starts, it creates PNA agent
(operation 1) which travels (operation 2) to the
downstream node (node B) in the virtual circuit. On node

B, PNA agent clones itself. The PNA clone identifies the
next hop and travels to it (operation 4). These operations
(operations 5, 6 and 7) are repeated until one of the PNA
copies reaches the egress node (node F), initiating the
VCM phase. The PNA clone hosted in the egress node
(node F) sends periodically the local QoS parameters to
the PNA clone in the upstream node (operation 8). On the
upstream node (node E), this QoS information is
aggregated to the local one and sent to the next upstream
node. In this way, during the VCM phase, the QoS
information of all nodes is delivered to INA agent
(operations 9 – 12). INA agent uses this QoS information
to figure out the critical section (nodes C, D and E) of the
virtual circuit. At this time, INA agent while creating
SRA agent, hands over to it the address of the first node
of the critical section (operation 13). SRA agent just
travels to the first node of the critical section (node C) and
begins executing to finish the AI phase.

INA agent also implements a triggering function to
diminish the side effects produced by the position
changing of the critical section. Due to traffic patterns, as
well as load unbalance on network nodes and links, it is
expected that the position of the critical section changes
over time. The triggering function only allows to create a
new SRA agent whenever three consecutives critical
section calculations lead to the same results.

Alternative Path Searching (APS) and Alternative
Path Monitoring (APM) Phases

APS phase starts when SRA agent begins to execute
its first instruction on the first node of the critical section,
and ends as soon as the last replica reaches the last node
of the critical section, pointing out that the last alternative
path was discovered. The description of this phase is
graphically presented in Figure 5. This figure is similar to
Figure 4, including two alternative paths in the searching
area around the critical section. The dotted arrows
represent the alternative path update messages.

INA

SRA

PNA PNA PNA PNA PNA

1

SRA

1'

3

2

3'

2'

Ingress Node Egress Node

A B C D E F

G H

I

SRA SRA

SRA

SRA

4'

UPM 1

UP
M

 2

UPM
 3

U
PM

 1
'

U
PM

 2'

Figure 5: APS and APM phases

SRA agent interacts with the local operating system
(node C) to obtain all active interfaces through which

SRA clones are launched next. These operations are
carried out until SRA agent copies arrive at the last node
of the critical section (node E). The adopted scheme for
searching alternative paths around the critical section was
flooding. To limit the searching area, which encompasses
the nodes and links involved in searching tasks, a specific
private variable was incorporated in the SRA agent code.
This variable specifies the maximum alternative path
length. For every hop, this variable is decremented and if
a zero value is reached, the SRA stops running. Hence,
the flooding of SRA agent is restricted to the searching
area.

INA PNA
PNA

PNA
PNA

PNA
SRA

1

2

9

Ingress
Node

Egress
Node

A B C D E F

G H

I

SRA
SRA

SRA

SRA

External Rerouting
Request

3

4

5

6

Figure 6: RF Phase Early and on-demand approach

The first SRA agent replica to host in the last node of
the critical section begins to send update messages (UPM
1) to the upstream alternative path node. After that, as
new replicas arrive through the other interfaces, they
transfer the incoming interface (operation 3’) identifier to
the first replica and stop running (operation 4’)
immediately. Then, update messages will also be sent
through this new interface (UPM 1’).

These operations are related to the creation and
assignment of labels on the alternative path that was
selected previously (operation 2). It is worth noting that
while on the former approach the labels were assigned for
all alternative paths discovered in the searching area, on
the latter, labels were only consumed for the nodes of the
chosen alternative path.

APM phase consists of sending messages with the
local QoS information of the alternative paths to the SRA
agent hosted in the first node of the critical section (node
C). These operations are similar to VCM phase. The SRA
agent on node C builds an information base to choose the
best alternative path on receipt of a rerouting message.

5. Implementation and Tests
The platforms for development and testing of the

prototypes were PC based hardware with Linux as the
underling OS. Java (JDK- version 1.3.1) was the language
adopted for coding the components - agents - of both
architectures. A mobile infrastructure called µCode [10]
was incorporated to the Java virtual machines of the test
platforms. This infrastructure provides a computing
environment for execution of mobile threads. According
to Fuggeta’s taxonomy [11], µcode furnishes weak
mobility because agent data state remains unaltered after
migration while the execution state is lost.

Redirecting Flow (RF) Phase

In RF phase, operations are triggered after an external
rerouting request reaches the INA agent in the ingress
node. This is the reason why this phase is said reactive.
The time constraint is an issue because high latencies in
this phase can jeopardize application performance.
Nevertheless, another concern that is tightly coupled with
RF phase latency is the label assignment on the alternative
path nodes. If labels are assigned during the proactive
APM phase, RF phase latency is reduced at the cost of a
higher number of labels consumed. That is, in APM
phase, labels on all nodes in the searching area must be
assigned in advance. Depending on the number of nodes,
the degree of redundancy of the searching area, number of
flows being rerouted and number of virtual circuits, the
label spaces of searching area nodes may be exhausted.
Hence, RF phase can adopt two possible approaches: the
early or on-demand label assignment.

Perl scripts were written to provide the means for the
interaction between the rerouting agents and OSes. IP
addresses and labels are information that must be
available to the rerouting agents as well as the support for
reconfiguring routing and forwarding tables on the fly.
The rerouting agents were tailored for redirecting flows
with bandwidth and latency constraints on a MPLS-IP
network infrastructure.

The management and rerouting tests aim at verifying
whether the proposed proactive schemes working together
in the same framework are able to avoid QoS failures.
Besides, it will be possible to conclude the feasibility of
Java and µCode as the underling mobile environment. Figure 6 shows RF phase operations for both

approaches. SRA agent located at the first node of the
critical section (node C) chooses the best alternative path
and redirects the flow by changing the labels (operation 6)
after having received a rerouting message from INA agent
(operation 1). That is, on early assignment approach,
operations 2 through 5 are not executed. After operation 2
is finished, SRA jumps directly to operation 6. Operations
2 through 5 are needed for the on-demand label
assignment approach.

5.1 Proactive Management Tests
In the first test, it was measured how much time was

spent for the Specialist to get ready to start some action in
a managed element. Figure 7 presents an overview of the
test.

Inspector gets measures from the managed element
and detects a tendency of QoS failure in a parameter.
Then Inspector prepares and sends, via Java socket a

Tendency Alarm to its Domain Manager. DM analyses
this alarm and decides which Specialist to send to which
managed element (in this case, the same one of the
Inspector). The Specialist is sent by µCode only if the
Specialist code is not present in the class space of the
destination element otherwise a reference is forwarded.
After that, the Specialist is instantiated and put to run. All
processing phases are represented in Figure 8.

DomainDomain
ManagerManager

Pentium ...Pentium ...

LinuxLinux RedRed HatHat 7.27.2

JVM 1.3JVM 1.3

µµServerServer AdventnetAdventnet

Pentium ...Pentium ...

LinuxLinux RedRed HatHat 7.27.2

JVM 1.3JVM 1.3

µµServerServer

100 100 MbpsMbps EthernetEthernet

TendencyTendency AlarmAlarm
SpecialistSpecialist BytecodeBytecode

SpecialistSpecialist InspectorInspector
DomainDomain
ManagerManager

Pentium ...Pentium ...

LinuxLinux RedRed HatHat 7.27.2

JVM 1.3JVM 1.3

µµServerServer AdventnetAdventnet

Pentium ...Pentium ...

LinuxLinux RedRed HatHat 7.27.2

JVM 1.3JVM 1.3

µµServerServer

100 100 MbpsMbps EthernetEthernet

TendencyTendency AlarmAlarm
SpecialistSpecialist BytecodeBytecode

SpecialistSpecialist InspectorInspector

Figure 7: Overview of the first test

SampleSample
GotGot

VariationVariation
CalculationCalculation

AlarmAlarm
PreparationPreparation

ReceptioReceptio
of of AlarmAlarm

SpecialistSpecialist
IntantiationIntantiation

StartStart
of of ActionAction

byby
SpecialistSpecialist

tt

SendingSending
AlarmAlarm
to DMto DM

AlarmAlarm
AnalysisAnalysis

NotificationNotification
PreparePrepare

NotificationNotification
of of SpecialistSpecialist

to to bebe
ExecutedExecuted

InspectorInspector DomainDomain ManagerManager InspectorInspector
NetNet

DecisionDecision
of of sendingsending
na na AlarmAlarm

InspectorInspector
ManagerManager

SpecialistSpecialist
SearchSearch

AskingAsking
forfor

SpecialistSpecialist
CodeCode

SendingSending ofof
thethe

SpecialistSpecialist
CodeCode

NetNet NetNet NetNet

SendingSending
of of CodeCode

ii iiii iiiiii iviv vv vivi viivii viiiviii ixix xx xixi

SampleSample
GotGot

VariationVariation
CalculationCalculation

AlarmAlarm
PreparationPreparation

ReceptioReceptio
of of AlarmAlarm

SpecialistSpecialist
IntantiationIntantiation

StartStart
of of ActionAction

byby
SpecialistSpecialist

tt

SendingSending
AlarmAlarm
to DMto DM

AlarmAlarm
AnalysisAnalysis

NotificationNotification
PreparePrepare

NotificationNotification
of of SpecialistSpecialist

to to bebe
ExecutedExecuted

InspectorInspector DomainDomain ManagerManager InspectorInspector
NetNet

DecisionDecision
of of sendingsending
na na AlarmAlarm

InspectorInspector
ManagerManager

SpecialistSpecialist
SearchSearch

AskingAsking
forfor

SpecialistSpecialist
CodeCode

SendingSending ofof
thethe

SpecialistSpecialist
CodeCode

NetNet NetNet NetNet

SendingSending
of of CodeCode

ii iiii iiiiii iviv vv vivi viivii viiiviii ixix xx xixi

Figure 8: Phases of the test

There could be as much as four network transits
(alarm sending, Specialist type notification, Specialist
code request and Specialist code shipment) and all layers
of processing showed in Figure 7. The alarm analysis in
DM was not accomplished in this test. This analysis may
require reasonable complexity computations, once
techniques of artificial intelligence and/or access to a
database with the baseline of the network may be needed.
Although, DM is unique for an entire domain, as a
corporation network, for instance, it could be executed in
a workstation with enough processing capacity. The
results are presented in Table 1.

Table 1: Results of the first test

 Subtest
1

Subtest
2

Subtest
3

Mean: 136.80 42.23 433.40
Adjust to Normal (%): 99.99 95.48 95.30
Standard Deviation: 7.24 5.39 6.27
Conf interval of 95%: ±2.59 ±1.93 ±2.24

In subtest 1, the Specialist code size was 1 KB and

systems were rebooted to eliminate the presence of code
in cache. That is, at all times, the transmission of the code
was required. In subtest 2, systems were not rebooted, so
codes were in cache and not retransmitted. In subtest 3,
systems were rebooted and Specialist had 10 KB of byte
codes.

The worst case – Specialist with 10 KB without cache

– required 433 ms to start an action at the managed
element. If network delay was 120 ms, a very large delay
for a intra domain network, 480 ms have to be added,
totalizing 913 ms. These numbers indicate that 1 second is
a reasonable limit between detection of a Tendency Alarm
and starting an action.

The second test consists of monitoring delays in a
multimedia application with a server and a client
streaming a video with 400 Kbps. The network used
(shown in Figure 9) is from a university school with
twelve different departments and is a typical network
where multimedia applications will be commonly used in
the future.

VideoVideo
ServerServer

Internet
2

Internet Internet
22

VideoVideo
ClientClient

HubHub

HubHub

LevelLevel 22
SwitchSwitch

LevelLevel 22
SwitchSwitch

LevelLevel 22
SwitchSwitch

LevelLevel 33
SwitchSwitch

RouterRouter

+ 15 + 15 stationsstations

+ 10 + 10 stationsstations

+ 150 + 150 stationsstations

+ 120 + 120 stationsstations

+ 100 + 100 stationsstations

100 100 MbpsMbps 10 10 MbpsMbps

TrafficTraffic wichwich delaydelay

VideoVideo
ServerServer

Internet
2

Internet Internet
22

VideoVideo
ClientClient

HubHub

HubHub

LevelLevel 22
SwitchSwitch

LevelLevel 22
SwitchSwitch

LevelLevel 22
SwitchSwitch

LevelLevel 33
SwitchSwitch

RouterRouter

+ 15 + 15 stationsstations

+ 10 + 10 stationsstations

+ 150 + 150 stationsstations

+ 120 + 120 stationsstations

+ 100 + 100 stationsstations

100 100 MbpsMbps 10 10 MbpsMbps

TrafficTraffic wichwich delaydelay

Figure 9: Network infrastructure for test 2

Delay was monitored at 0,2 Hz and the limits set to
generate a Tendency Alarm by the specialist was two: (i)
when accumulated delay, not considering the number of
samples, increase 40 ms, and (ii) when, in one interval
between two samples, delay increase 35 ms. It was
considered that a delay of 90 ms causes a QoS failure. The
measures of delay were repeated for weeks and the most
significant two-hour (14 to 16h) period for our analysis
was selected. This is shown in Figure 10. During other
periods the traffic of the network was extremely light,
being difficult to get QoS failures. The objective of the
test is to measure the efficacy of detecting QoS failure
tendency. Results are summarized in Table 2.

Table 2: Results of test 2
Fact Qtty

Two hour samples: 720
QoS failures: 49 100 %

(Reference)
QoS failures preceded of alarms: 24 49.0 %

Alarms generated 5s before
failure:

10 20.4 %

Alarms generated 10s before
failure:

7 14.3 %

Alarms generated 15s before
failure:

5 10.2 %

Alarms generated 10s before
failure:

2 4.0 %

Alarms generated at the failure: 15 30.6 %
Failures not preceded by alarms: 8 16.3 %

Among 720 samples, 49 presented latencies above 90 ms..
A sequence of adjacent samples with delay 90 ms or
superior is considered as 1 time, once the increase of the

80

100

0

20

40

60

120

140

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 311 321 331 341 351

Retardos Alarmes

80

100

R
Cruces are samples, triangles are alarms. Thicker lines show 90 ms limit

etardos (amostras 1 a 360)

0

20

40

60

120

140

160

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 311 321 331 341 351

Figure 10: 720 Delay samples and alarms for 2 hours (14-15h above, 15-16h below)

variation causes QoS failure and not the maintaining of a
high delay without abrupt variation. Of these 49 failures,
24 of them were preceded of Tendency Alarms within 5 to
20 seconds before they occur. That is, 49% of efficacy.
15 of the failures were detected only at the sample they
occur, that is, without any anticipation. These are inutile
alarms. In 8 failures there wasn’t any alarm generated.
This happened because delay was high at the time,
varying little, but above and below 90 ms. 24 of the
Tendency Alarms generated were false. They were
generated but no QoS failure occurred within 20 s after
the alarm.

In this test there were no actions started by specialists.
These actions could have prevented some of the QoS
failures

5.2 Proactive Rerouting Tests
A prototype was implemented to verify if the proposed

proactive rerouting architecture is able to reroute pre-
established flows before the occurrence of a QoS fault. In
the context of this article, the CR phase latency must be
confronted with the time that the proactive management
detects tendencies of QoS faults in advance. The total
latency of the proactive rerouting phases, except CR one,
is also important because it establishes the minimum
lifetime of flows, which can be rerouted. In other words,
flows can be rerouted only if their lifetimes are higher
than the total latency of all these phases. This latency is
the time elapsed between the installation of INA agent in
the ingress node and SRA agent receipt of the first update
massage, indicating that the first alternative path was
found out.

Table 3: Test Results – Proactive Phases (ms)
AI phase APM phase

Values 1 2 3

VCM
pha-
se

APS
phase 1 2

Avg 821 58
0 321 33.5 326 27.9 74.7

STD 41 20 4.58 0.35 15 0.71 3.89
Conf 95% 11.4 5.4 1.3 0.1 4.2 0.2 1.1

To measure phase latencies, five tests were

established. These tests correspond to the rerouting phases

identified previously. As phase latencies depend on
virtual circuit (VC) and alternative path (AP) lengths,
each test was also divided into subtests. By measuring
subtest latencies, it is possible to derive the relationship
between the total rerouting latency and the virtual circuit
length as well as the alternative path length.

Tables 3 and 4 summarize the test results presenting
the values measured. K6-II/500Mhz machines with Linux
Red Hat 7.2 and a patched Kernel version 7.4.19 were
used as MPLS routers.

Table 4: Test Results – Reactive Phase (ms)
RF phase

RF 2 RF 3 Values RF 1
1 3 A C

Avg 4 4 90 4.5 122
STD 0 0 2.87 0.07 3.95

Conf 95% 0 0 0.8 0.02 1.09

The subtests underlined in Table 3 are those that

should be executed as many times as the number of virtual
circuit hops while the bolded ones are repeated a number
of times equal to the number or alternative path hops.

2 4 6 8 10 12 14

6000

8000

2000

4000

10000

12000

14000

2
3
4
5

LVC

tLF
(ms)

LAP : Alternative path length - hops
LVC : Virtual circuit length - hops
tLT : Minimum time for rerouting
 (minimum flow lifetime) - ms

LAP

tLF= 613.5 LVC + 428.6 LAP + 1587

Figure 11: Min time for rerouting - Early approach

Computing the values in Table 3 in accordance with
the length dependency nature of each subtest, the
derivation of the expressions and graphics in Figures 11
and 12 are straightforward. Figures 11 and 12 present the
results considering the early and on-demand label
assignment approaches respectively.

2 4 6 8 10 12 14

6000

8000

2000

4000

10000

12000 tLF
(ms)

Lap: Alternative path length - hops
Lvc: Virtual circuit length - hops
tLT: Minimum time for rerouting
 (minimum flow lifetime) - ms

2
3
4
5

Lap

Lvc

tLF= 613.5 LVC + 353.9 LAP + 1587

Figure 12: Min time rerouting - On-demand approach

To make clear the lifetime flow limitation, Figure 11
shows that it is only possible to reroute flows with
lifetime longer than 11.9 s for alternative paths lengths
shorter than 4 hops and virtual circuit length equals to 14
hops. Theses graphics also show that the minimum time
for rerouting (minimum flow lifetime) is lower when on-
demand label assignment scheme is adopted. In this case,
the RF phase latency increases.

RF phase latency can also be calculated with the
values in Table 4. For on-demand label assignment
approach, this latency is equal to the sum of tests 1 and 2
latency values, 98 ms.. Early label assignment scheme
makes RF phase latency be dependent on alternative path
length due to the additional operations needed (as shown
in Figure 13).

2 4 6
300

400

500

600

700

800

LAP

tRF
(ms)

LAP: Alternative path length
tRF : RF phase latency

tRF : 122LAP + 102,5

Figure 13: RF phase latency

To reroute a flow (RF phase), it is necessary 834.5 ms
for a 5-hop-length alternative path. The virtual circuit
length does not impact the rerouting time if the partial
proactive rerouting approach is adopted. Hence, as the
searching area size limits the alternative path length, it
could be adjusted accordingly. The searching area size is
a trade-off between the probability of finding alternative
paths and the rerouting latency. Finally, the results show
that rerouting flows proactively in a partial manner is
feasible since all latency values were far below the time
the proactive management prototype is able to detect
tendencies of QoS failures.

6. Conclusions
This paper introduced proactive management and

rerouting architectures, which work together, establishing
a framework to enhance the underling network
functionalities for furnishing QoS to critical applications
such as real-time multimedia.

Besides the presence of many software layers, real
time proactive performance management is already
possible. Nevertheless, further studies are necessary to
establish the limits of the proposed scheme.

The proactive rerouting architecture was presented as
a tool for management systems to redirect critical
application flows through alternatives paths in a trial to
revert the QoS fault tendency. The partial rerouting was
highlighted and its benefits as well as its shortcomings
described. Test results of the prototypes and the
confrontation of both demonstrated that it worth devoting
more effort in investigating theses approaches for
delivering QoS. The conception of the proposed
framework based strongly on the proactive principle
reveals the authors’ belief that the apparent randomness of
network traffic is tractable. In addition, this randomness
may be managed on network design and management
levels in such a degree that, in the future, this framework
could help providing satisfactory QoS over a
connectionless environment.

References
[1] Kawamura, R. and Stadler, R., “Active Distributed
Management for IP Networks”, IEEE Communications
Magazine, 2000.
[2] Labovitz C. et al, “Delayed internet routing convergence”,
In Proc. ACM SIGCOMM '00 pp. 175–187, Stockholm,
Sweden, 2000.
[3] Rosen E. et al, “MPLS Architecture”, RFC–3031, IETF
January 2001.
[4] Tennenhouse, D.L. et al, “A Survey of Active Network
Research”, IEEE Comm.s Mag., Jan 1997.
[5] Bradshaw, J. et al, “Software Agents”, The MIT Press,
Menlo, California, 1997.
[6] Autenrieth, A. and Kirstdter, A. “Fault-Tolerance and
Resilience Issues in IP-Based Networks, Second International
Workshop on the Design of Reliable Communication Networks
(DRCN), April 1995.
[7] G. Apostolopoulos et al, “Intradomain QoS Routing in IP
Networks: A Feasibility and Cost/Benefit Analysis”, IEEE
Network Magazine, 1999.
[8] Bieszczad, A., Pagurek, B. and White, T., “Mobile Agents
for Network Management”, IEEE Communication Surveys,
Fourth Quarter, 1999.
[9] Pacifici, G. and Stadler, R., “An Architecture for
Performance Management of Multimedia Networks”, IFIP/IEEE
International Symposium on Integrated Network Management,
1995.
[10] Picco, G.P., “µCode: A Lightweight and Flexible Mobile
Code Toolkit”, Proceedings of the 2nd International Workshop
on Mobile Agents 98, 1998.
[11] Fuggeta, A. et al, “Understanding Code Mobility”, IEEE
Transactions on Software Engineering, IEEE, 1998.

	References

