
Autonomous Agents for Web Pages Filtering

Flávia Coimbra Delicato, Luci Pirmez e Luiz Fernando Rust da Costa Carmo
NCE/UFRJ - Núcleo de Computação Eletrônica – Federal University of Rio de Janeiro

E-mails: flavia@eng.uerj.br, luci@nce.ufrj.br, rust@nce.ufrj.br

ABSTRACT

With the current growth of the information available
in Internet, users are facing an information overload. This
work proposes a multiagent system for Web pages
personalized filtering. The system is composed of a set of
autonomous and adaptive agents that automatically
provide relevant documents to the user according to a
preferences profile. The agents learn with the user
feedback and attempt to produce better results over time.
This work presents the system description and the
promising results of tests performed in a simulated
environment. The proposed system proved to be a useful
tool to recommend successfully relevant information to
a well-defined preferences user.

1 INTRODUCTION
The use of the Internet has been growing in the last

years with the appearance of World Wide Web. The
exponential increase of computer systems that are
interconnected in on-line networks has resulted in a
corresponding increase in the amount of information
available. Although the increase of the information
available facilitates the spreading of knowledge and the
acquisition of products and services, it also makes the
search for relevant material a real challenge. New tools
have been designed with the purpose of locating, filtering
and organizing the huge amount of available information.

Recent work that arises at the intersection on
information retrieval and software agents offers some
new solutions to this problem. Information retrieval is a
well-established field of information science that
addresses the retrieval from a large set of documents in
response to user queries. Agent research is a relatively
new field of study, which has grown out of artificial
intelligence.

Agents can be defined as softwares with the aim of
performing tasks for their users, usually with autonomy,
playing the role of personal assistants. Users can delegate
to the agents the execution of repetitive and time-
consuming tasks.

In order to be of real usefulness for its users, the
agents have to learn their interests and habits using
techniques of machine learning. They also should be able
to adapt themselves to the changes in the users interests,
while at the same time they explore new domains of
potential interest to the user.

 The present work suggests the use of autonomous
agents for the personalized information filtering. The
proposed system is composed of a set of adaptive and
non-mobile agents aiming to satisfy the user's needs for
information. The agents receive the user's feedback about

the relevance of the retrieved information and

improve their search, obtaining better results over time.
The set of agents is autonomous as it can perform its

task without the user's presence, based on a preference
profile previously built. Besides that, the agents can
process information from Internet without keeping the
connection during all the time of processing. This is one
of the features that classify the agent as autonomous [12].

The system is adaptive as it learns the user's
preferences and adapts itself when these ones change
over time. The main agent's learning mechanisms is the
relevance feedback, widely used in information retrieval
systems [14]. The use of genetic algorithms [8] as a
complementary mechanism aiming to introduce diversity
in the system's parameters is addressed. The information
is represented by the vector space model [15], where
queries and documents are represented as vectors in a
vector space. This method was chosen for its efficiency
proved in various works in the area of information
retrieval [16][4] and for its relative easy implementation.

The results presented were obtained through a series
of sessions with simulated users. The system's efficiency
evaluation was made through the normalized distance
performance measure (ndpm), suggested by Yao [20].

This paper is organized as follows. In section 2
there's a comparison with related works. An overview of
concepts is given in section 3. Section 4 describes the
system and the development methodology. The system
architecture is detailed in section 5. The analysis of
results is presented in section 6 and, finally, some
conclusions are drawn in section 7.

2 RELATED WORKS
In the past few years many attempts have been made

towards the development of agents that assist in dealing
with the huge amount of information available. In the
domain of Web , WebWatcher [2] and Lira[3] are agents
whose actions are interleaved with the user’s browsing in
Netscape. They run on the server-side and require explicit
interaction to indicate interest in topics or particular
pages. The Remembrance Agent [13] is an autonomous
interface agent that reminds the user of relevant files
stored on the user’s local disk. MIT Media Laboratory’ s
Letizia [10] is an autonomous interface agent designed to
assist and provide personalization to the user while
browsing the WWW by performing a breadth-first search
on the links ahead and providing navegation
recommendations. Other agent-based systems use some
techniques to try to detect patterns in the user's behavior.
For instance, InfoScope [7] learns by using systems based
on rules that register interesting topics covered in the
past. Recommendations of new topics are based on how
recent, frequent and spaced these past topics are. The

main disadvantage of such approaches is that they are
restricted to recommendations of topics within the
domain of user's past interests. In the same way, assisted
browsing systems are restricted to the sections of the Web
visited by the user, recommending links starting from
them. In contrast, the proposed system looks for new
domains for information that can be of potential interest
for the user. The user probably never saw before the
presented topic.

The Newt system [16] is a software agent which
adopts relevance feedback and genetic algorithms to
provide personalized filtering of Usenets news. The
approach differs from the present work in the application
domain. Besides this, Newst uses the traditional method
of vector-space representation, as described in [15],
while in this work different documents representation
were tested.

More similar to our work with regards to application
domain and representation are the systems built by
Balabanovic [5] and Amalthea, proposed by Moukas
[11]. Balabanovic proposed a multiagent system that
combines both content-based and collaborative
techniques applied to the web pages recommendation.
That work adopts the vector-space model, relevance
feedback as the learning method based and he suggests
the use of genetic algorithms as a possible solution for
some of the problems found in the content-based filtering.
Amalthea is a system that combines the concepts of
autonomous agents and artificial life in the creation of an
evolving ecosystem composed of competing and
cooperating agents. A co-evolution model of information
filtering agents that adapt to the various users interests
and information discovery agents that monitor and adapt
to the various on-line information sources is proposed.

3 BACKGROUND
The purpose of this section is to introduce basic

concepts and definitions that lay a basis for the system
designs and experiments to follow. Section 3.1 presents
the idea of autonomous agents, section 3.2 gives an
approach of information filtering systems and section 3.3
describes the relevance feedback technique.

3.1 Autonomous Agents
An autonomous agent is a program that works in

parallel with the user. Autonomy says that the agent is,
conceptually at least, always running [10]. The agent may
discover a condition that might interest the user and
autonomously decide to notify him. The agent may
remain active based on previous input after the use has
given other commands or has even turned the computer
off.

The role of an agent as a personal assistant requests
the ability to act independently and concurrently to the
user. An assistant would not have much practical
usefulness if he needed to receive explicit instructions
and constant supervision during the whole time of his
work execution. On the other hand, with autonomy, he
can save the user's time, executing in parallel repetitive
tasks while the user drives his attention for another tasks.

The filtering of Web pages is a well-suited domain for
autonomous agents. Web users claim for some kind of
intelligent help, since the direct-manipulation interface
of manually following links in a browser is not enough to
prevent them of being overloaded of irrelevant
information. [10].

3.2 Information Filtering Systems
The information filtering task involves repeated

interactions over multiple sessions with the users having
long-term goals. It differs from the information retrieval
task, where the users typically have a short-term
information need that is satisfied in a single session [16].

Information filtering systems assist users by filtering
the data stream and delivering the relevant information to
the user. Information preferences greatly vary across
users, thus, filtering systems must be highly personalized.

Three different approaches can be identified in the
filtering systems literature:
• Systems based on the user's profile [6];
• Systems that perform filtering in a cooperative way,

sharing information [18]; and
• Systems that use agents, in which mobility,

intelligence and autonomy are fundamental factors
[12].

3.3 Relevance Feedback
One of the most important and difficult operations in

information retrieval is to generate queries that can
succinctly identify relevant documents and reject the
irrelevant ones. Users often submit queries containing
terms that don't match the ones used to index most of the
relevant documents and almost always many unretrieved
relevant documents are indexed by different terms from
the ones in query. This problem has long been recognized
as a major difficulty in information retrieval systems [9].

Since the difficulty in accomplishing a successful
search at the first attempt is recognized, it is common to
perform iteratively searches and reformulate query
statement based on the evaluation of previously retrieved
documents. The relevance feedback method is usually
adopted for automatically generating improved query
formulations [14]. A query can be improved iteratively by
using an available query vector (of terms) and adding
terms from the relevant documents, while subtracting
terms from the irrelevant ones. A single iteration of
relevance feedback frequently produces improvements of
40 to 60 % in the search precision [15].

4 SYSTEM DESCRIPTION
The present work proposes the use of agents for the

personalized information filtering. The proposed system,
named Fenix, is composed by a set of autonomous,
adaptive and non-mobile agents, aiming to satisfy the
users information needs.

An agent is modeled as a set of individual profiles.
As a whole, all the profiles in a population try to satisfy
the user's interests and adapt themselves to these
interests. One user may have various agents, each of them
satisfying his/her needs for information about a certain
subject.

The agent is responsible for starting the execution of
search and filtering tasks, one for each profile. As the
tasks are autonomous, they are sub-agents in Fenix
system. Each sub-agent, using different search engines,
goes through the web pages looking for documents
containing the keywords provided by the user. The set of
documents obtained undergoes the filtering process,
according to the adopted model. The selected documents
are the ones with the higher degree of similarity with the
respective profile. These documents are provided for the
responsible agent that has to gather the results from all
the sub-agents, to classify them according to their
potential relevance, presenting them to the user. The user
can provide positive or negative feedback for the
documents. User feedback has the effect of modifying the
profile used to retrieve that document.

4.1 Development Methodology
Fenix system was developed according to the object

oriented approach. The programming language adopted
was Java, by Sun Microsystems Inc., and the
development environment was Jbuilder Standard 3.0, by
Borland Corporation, that uses JDK (Java Development
Kit) version 1.2. The system was implemented as a Java
application to be running locally in the user's machine.

4.2 Fenix Features
A number of attributes can be identified on

classifying Fenix as a software agent. These features are
discussed below.
Autonomy

Fenix is able to make judgements about the
documents relevance without the direct intervention of
the user. Besides, when the autonomous mode is on, the
system starts new search and filtering tasks automatically,
based on the keywords of the user profiles. Concern to
the execution environment, a local database is created
after the searches and the user hasn't to keep connected to
the Internet in the posterior stages of processing. This
feature classifies an agent as autonomous in respect to the
environment [12].
Temporal Continuity

Fenix has an autonomous mode, in which the system
remains active all through the time the user's machine is
on. He runs in background until accomplishing its
searches for all the user agents. However, the user's
machine needs to be on, since the agents reside locally
and not in a remote server.
Adaptation Ability

Fenix learns through its learning mechanisms,
adapting to the user's interests along the time.
Social Ability

Each user agent starts the execution of several
autonomous search and filtering tasks. At the end of all
tasks the results are gathered by the controller agent who
is responsible for classifying them according to its
relevance eliminating repetitions before presenting them
to the user. Thus, the Fenix social capacity is established
in terms of the interactions among an agent’s tasks, which
cooperate to each other aiming a common goal. The

interactions are made through messages implemented in
the programming language adopted.
Reactivity and Pro-activeness

The system can detect changes in the user's
environment as, for example, a document reading and
evaluation. In the autonomous mode, if it was detected
that all the documents of a profile have already been
evaluated by the user, an agent can take the initiative of
beginning new searches.

5 ARCHITECTURE
Fenix system is composed of various functional

modules (figure1). The modules are implemented as
groups of related classes. The description of each module
is given below.

5.1 User Interface Module
This module presents a graphic interface to interact

with the user. The user's interaction with Fenix system
begins with his registration, where he must inform his
personal data and choose a login and a password. After
the identification the user can choose from three options:
to create a new agent, to load an existing one or to
activate the autonomous mode.

When creating a new agent, the user must choose a
name and a background color, and provide the following
search parameters: maximum number of documents
shown per session (default is 30); and the query
expression. A query in Fenix system is a combination of
keywords (technically called terms), separated by blank
spaces. The use of logical connectives is not allowed. The
presence of the connective AND between the terms is
automatically assumed.

 As a result of the initial search, a series of retrieved
documents is presented. After reading the chosen
documents, the user can provide positive (+1) or negative
(-1) feedback according to their relevance.

The user can visualize the pages of the documents
through the button "Shows". That button activates the
local navigator, as, for example, the Netscape or Internet
Explorer, that should be configured in the system.

The user can modify a document URL, if he finds a
more interesting link starting from the initial page,
through the button "Alters". He can also include a URL
of interest manually, that has not been retrieved by the
agent, by clicking the button “Includes”.

When saving a newly created agent, the references to
the documents with positive feedback will be saved (their
URLs) and the term vector and their weights will be
created, building the initial profiles for that agent.

The user can also choose some URLs to be
constantly monitored. Certain URLs are frequently
changed and updated, and the system can be scheduled to
verify from time to time if their contents changed.

When loading an existing agent, the user can choose
one from three actions: to read some retrieved document,
to provide feedback about some document or to start a
new search for documents.

The Fenix "Autonomous Mode" works performing
search and filtering tasks without interaction with the

user. This option is totally controlled by a separate thread,
and it works in the following way: � the system verifies all the agents belonging to

the user; � for each agent, the status of all its documents is
verified; � in case of existing documents not read, the user
receives the message informing about that and
the corresponding agent's name; � in case of all the documents of all the agents
have already been read, the system initiates new
searches for each user's agents; after the
searches, a message is presented informing that
the user should choose the option of " Shows "
for the respective agents.

5.2 Filtering Module
The filtering process consists in translating

documents to their vector representations, calculate the
similarity between documents and profiles, and selecting
the top-scoring documents for presentation to the user.

Figure 1: System’s architecture

The representation adopted in this work is based on

the vector space model (VSM) [15]. According to it,
documents and queries are represented as vectors in a
hyperspace. A metric distance, which measures the
proximity between vectors, is defined over space. The
filtering results are the documents with representation
that have the highest degree of proximity to the query
vector.

A standard method for indexing texts consist in
removing punctuation marks, recognizing individual
words, eliminating functional words (as "and", "that", etc)
using a stop-list, and using the remaining words for
content identification of the text. The words may also be
truncated, leaving only their stems. This method was
adapted for using with web pages. A further step was
added, in which the html "tags" were identify, and most
of them was removed, except some "meta-tags". "Meta-
tags" are commonly used to describe the pages, so they
are suppose to be significant for content description
purposes.

Since the words (called "terms") are not equally
important for content representation, weights are assigned
to them, in proportion to their presumed importance to
content identification purposes. A text is then represented
as a vector of terms and a vector of related weights,

T i = { W ij } , where W ij represents the weight of
term t j in text T i.

In the adopted representation, the term weight is the
product of the term frequency and the inverse document
frequency. This is a frequently used representation in
information retrieval systems [15]. The term frequency
(tf) is the occurrence frequency of the term in the text and
it usually reflects the relevance of this term. The inverse
document frequency (idf) is a factor that enhances the
terms that appear in few documents, while it devaluates
the terms occurring in many documents. As a result, the
documents specific features are highlighted, while the
ones spread through the set of documents have minor
importance. The weight of the terms is then given as:

Wij = tf ik X idfk, (1)
where tf ik is the number of occurrences of term tk in
document i, and idf k is the inverse document frequency
of term tk in the collection of documents. A commonly
used measure for idf is idf k =log (N/nk), where N is the
total number of documents in the collection, from which
nk contain a term tk. In this work, a collection of
documents is formed by all the documents retrieved by a
profile.

A profile is a set of information about the retrieved
documents. Such information are, for example, the
documents location in the net (URL), the score computed
for the system to the documents and the user's feedback
assigned to them. Besides, it contains the vector
representation of all documents that received positive
feedback. The representation consists of a vector of terms
 similar to the one previously described for documents.

5.2.1 Evaluation of Filtered Documents

A commonly used similarity measure in the vector
space model is the cosine of the angle between vectors.
Many authors suggest other measures, as we can see in
[19]. In the proposed application, different formulae were
tested, and it was adopted the one proposed in [15] as
follow:

S (F i d, F i p) =
� �

�

)()(
22

ww

ww

ik
p

ik
d

ikik
k

pd

 (2)

where "d" indicates that the field belongs to a document
and "p" indicates that the field belongs to the profile.

5.2.2 Scoring and Selecting Documents

The documents retrieved through the search task
started by the respective profile will have their
similarities calculated in relation to that profile. The
agents are responsible for gathering the documents
generated by all the profiles, classifying them according
to their similarity values, eliminating repetitions and
presenting to the user.

The similarity values are converted to a class scale to
be presented to the user. This scale seems to be a more
natural representation of the document presumed
importance than a set of decimal values. A five points
scale was adopted, with the adjectives:
• Terrible: for scores equal to 0.2
• Poor: for scores between 0.2 and 0.3
• Neutral: for scores between 0.3 and 0.5
• Good: for scores between 0.5 and 0.8
• Excellent: for scores greater than 0.8

The maximum score value is 1.0 and it only happens
when the profile and the document representations are
identical. In this work, the limit of 0.2 it was adopted as
the minimum score that a document should have to be
presented to the user.

The user's feedback for a document has the effect of
modifying the respective profile. The profile has to
incorporate the changes before new documents can be
evaluated.

Since the term vector for a document with feedback
is available, the profile is modified according to equation
(3) described in the Learning Module below. The existing
terms are weighted again, and new terms are included.

5.3 Learning Module
The learning methods addressed in this work were

relevance feedback and genetic algorithms. Both methods
were designed as independent sub-modules. At the
present stage, the relevance feedback sub-module was
completely implemented and tested. The specifications of
the genetic algorithm sub-module had already been done,
but its implementation will be a matter of future works.

5.3.1 Relevance Feedback Sub-Module

In the relevance feedback method, an original query
vector (represented by the profiles) is modified based on
the user's feedback for the documents retrieved by the
profile.

For vector space representations, the method for
query reformulation in response to user's feedback is
vector adjustment. Since queries and documents are both
vectors, the query vector is moved closer to vector
representing documents with positive feedback, and
further from vectors of the documents with negative
feedback.

Take a profile P, which contributed to a document D
for presentation to the user. The user provides feedback,
which is a positive or negative integer. Each term in the
profile is modified in proportion to the feedback received:

∀i, k: W ik p = W ik p + α * f * W ik d (3)
that is, the weight of each term is changed proportionally
to the learning rate (α) and to the feedback. The learning
rate α indicates the sensibility of the profile to the user's
feedback, and, in general, assumes values between 0.5
and 1 [16].

The effect is that, for those terms already existing in
the profile, the term weights are modified in proportion to
the feedback. The terms not existing in the profile must
be added to it.

Relevance feedback is not the only way the user can
alter the dinamycs of the system. The user can explicitly

introduce new URLs or links he considers interesting, by
clicking the “Alter” and “Include” interface buttons.

5.3.2 Genetic Algorithm Sub-Module

In the next stage of this work the genetic algorithm
will be implemented as a complementary mechanism to
introduce diversity to the search parameters as a goal.
This goal will be achieved by recombining the contents of
different vectors of terms belonging to the same user
profile. Genetic operators, like mutation and crossover
will be applied.

The formal definition of a population P in an
iteration t is given in the equation below. P is defined as a
group, where each element is a pair of profile and its
fittness:

 P (t) = { (p, f (p))} (4),
 where p represents a profile and f (p) its fittness.

Each profile is converted for a binary representation, and
it corresponds to an individual or chromosome of the
population. The fittness is computed based on the average
values of similarity between the documents and their
respective profiles. The genetic operators of crossover
and mutation update the population to each generation,
introducing new members and taking advantage of the
fittest ones. The final objective is to evolve the
population in direction to a global optimization.

The use of genetic algorithms can possibly prevent a
frequently reported problem in information retrieval
works, the "over-fitting" [5]. When a profile become too
much specialized in his users interests, the filtering
results degraded. It occurs because the profile doesn't
assign high scores except to the documents that exactly
matches him. In this context, the genetic algorithm would
be able to revitalize the profile content and to prevent the
stagnation.

5.4 Controlling Module
This module is composed of three main controlling

classes, from which all the other classes are created and
their methods are called. Principal class controls the
system's global behavior. It is responsible for creating
the instances of the other controlling classes and for
coordinating the communication among them. It's also
responsible for calling the interface classes that
constructs the initial window of the system.

Agent class controls the behavior of each user's set
of agents. It identifies the need of an agent creation and
calls the methods of class PerfilAgente. It also receives
and agregates the search results of different agents,
eliminating redundancies and formatting them to
present to the user.

PerfilAgente class controls the specific behavior of
each agent. It creates one agent and starts its execution,
maintains its persistent data by accessing the local
database and updates its contents when it is necessary.

Furthermore, there are two classes considered as
parts of the controlling module: threadauto, responsible
for the autonomous behavior of the system; and
threadBusca, that controls the search module
execution.

5.5 Other Modules
The search module is responsible for gathering

information from web pages about the chosen subject
and saving them in a local database. With the
development of this work, there was a choice for using
existing search engines, such as Altavista1, Lycos 2and
others. This module became responsible only for
making the interface with these mechanisms, providing
the user's keywords to them, retrieving the search
results and storing the retrieved pages in a local
database.

The system database is composed of all
information from the user, his agents and respective
profiles, as well as the pages retrieved in searches. This
database is implemented through a group of classes
existent in Java standard APIs. Users and agents data
are stored in simple text files. Profiles and documents
are stored in object files.

6 RESULTS
In this work, it was adopted the performance

measure proposed by Yao [20]. The ndpm measure
("normalized distance-based performance measure") is
a distance, normalized to range from 0 to 1, between the
user's classification for a set of documents and the
system's classification for the same documents. This
will provide a relative measure, that will be more
appropriate to the system's goal than recall and
precision [17] measures, commonly used in information
retrieval.

An outline was adopted as suggested in [4]. A
special list of documents is supplied to a simulated user

1 Available in: http://www.altavista.digital.com
2 available in: http://www.lycos.com

who should classify it in agreement with his interests by
a subject. That list is randomly selected from several
documents retrieved from the web. The system also
ranks the documents according to how well they match
the profile previously built for that user.

An ordinal scale is adopted to obtain user rankings.
The user places each document into one of the five
categories: Excellent-Good-Neutral-Poor-Terrible. The
scores computed by the system are converted into each
category according to a range of values. The expected
result is for the ndpm distance between the user and
system classifications to decrease gradually over time,
as the user's profile is adjusted.

One hundred and twenty agents were created for
thirty subjects of interest to a simulated user. For each
subject, a certain number of simulated sessions of
"user"-system interaction were accomplished. After an
initial search, the agents classified the retrieved
documents according to the categories above, the "user"
evaluated the documents, providing their feedback
values and classification. With the feedback, the agents
profiles were adjusted to further searches and the
classification is used to computer the ndpm.

A progressive decrease of the ndpm distance along
the sessions (figure 2) was observed, indicating that the
agents were adapting themselves to the user's
preferences and increasing the probability of retrieving
a larger number of relevant documents while discarding
the irrelevant ones.

Several system configuration parameters were
tested in the simulated sessions.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6

Number of evaluations

nd
pm

Figure 2: Average ndpm distance between user
and system rankings, over all agents at evaluation
points.

 To sum up the final results we can say that the
system reached the best performance when:
• the terms of the query were more specific, in

opposite to generic queries;
• the agents were composed by at least 4 (four) and in

the maximum 10 (ten) profiles; and
• the term vectors of the documents had maximum

size of 300 terms.
 Nine agents were tested along 20 (twenty) sessions,
in order to compare with the work described in [5],

where a multiagent system was implemented for the
WWW pages recommendation. Balabanovic proposed
an architecture that combined content-based with
collaborative filtering. His system performance was also
evaluated with the ndpm measure and the obtained
curve had a behavior quite similar to the one presented
in the tests with Fenix (Figure 3). In his work 25
evaluation sessions were accomplished. The initial
values of ndpm average were of 0.4 and the final values
were 0.001.
 A question that has arisen in the tests was the low
scalability of the system. The number of users and
profiles is potentially increasing. As a consequence, the
efficiency issue must be addressed. Index structures and
algorithms have to be adopted aiming to optimize the
profiles and documents processing in order to the
system provides the relevant information in a timely
fashion.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

1 2 3 4 5 7 9 11 12 13 15 17 19 21Number of sessions

nd
pm

Figure 3: Average ndpm distance between user

and system rankings, over 20 sessions.

7 CONCLUSIONS
 Fenix is an autonomous agent that must be able to
specialize to user interests, to adapt when they change
and to explore the domain for potentially relevant
information.
 The system proved to be a powerful tool of
information filtering. The presented results confirmed
that the system, using the vector-space model with
relevance feedback as the learning mechanism is able to
successfully filter relevant documents for a well-defined
preferences user.

One important contribution of this work was the
adaptation of techniques commonly used for mail and
usenet articles filtering to web pages filtering.

The performance values obtained in simulated
tests based on the ndpm measure were similar to the
ones found in another works of information filtering.
Balabanovic [5] proposed an approach that combines
content-based and collaborative techniques applied to
the WWW pages recommendation. The results

described in his work were quite similar to the obtained
with Fenix, in which a simpler approach was adopted.

A problem detected during the tests was the low
scalability of the system. As a future work, a possible
solution for that problem is the implementation of a
system with multiple search agents collecting pages
web in several sources. The search agents would deposit
the pages obtained in a central repository where
individual users' personal agents would recover those
that best satisfied the its users' profiles. The supplied
feedback would go both to the personal agent (that
would adjust the user's profile) and to the search agents,
that would be serving the users' groups instead of
individual users and taking advantage of the shared
interests.

Another subject for future works is the
implementation of the genetic algorithm sub-module,
aiming to optimize the results of the filtering process.

The impact of systems like Fenix on an enterprise
may be quite significant. Several information search
tasks could be automated, as the system is able to filter
and classify different interesting subjects, so reducing
the time consumption and the money spent on those
activities.

Information filtering agents are a great promise to
the management of extensive available information.

REFERENCES

1. Ackley, D and Littman, M, Interactions between

Learning and Evolution. Artificial Life II, v X, pp.
487-509. Edited by C. Langton, C. Taylor, J.
Farmer and S. Rasmussen, Addison Wesley, 1992.

2. Armstrong, R. et all., WebWatcher: A Learning
Apprentice for the World Wide Web, in AAAI
Spring Symposium on Information Gathering,
Stanford, CA, March 1995. Available in:
http://www.cs.cmu.edu/afs/cs/project/theo-6/web-
agent/www/project-home.html.

3. Balabanovic, M. and Shoham, Y., Learning
Information Retrieval Agents: Experiments with
Automated Web Browsing, , in AAAI Spring
Symposium on Information Gathering, Stanford,
CA, March 1995. Available in:
http://flamingo.stanford.edu/ users/ marko/
bio.html.

4. Balabanovic, M. An Adaptive Web Page
Recommendation Service. Stanford Universal
Digital Libraries Project Working Papers SIDL -
WP. 1997.

5. Balabanovic , M. Learning to Surf: Multiagent
Systems for Adaptive Web Page Recomendation
Service. Dissertation submitted to the Department
of Computer Science and the Committee on
Graduate Studies of Stanford University. UMI
Number: 9837173. UMI Company. 1998.

6. Brusilovsky, P. Adaptive Hypermedia: an attempt
to analise and generalize.1994. Available in:
http://www.cs.bgsu.edu/hypertext.adaptive/
um94.html

7. Fischer, G., Stevens, C., Information access in
complex, poorly structured information spaces.

Human Factors in Computing Systems CHI'91
Conference Proceedings, 1991, pp. 63-70.

8. Goldberg, D. E. Genetic and Evolutionary
Algorithms come of age. Communications of the
ACM, 37(3):113-119, March 1994.

9. Lancaster, F. W. 1969. "MEDLARS: Report on the
Evaluation of Its Operating Efficiency." American
Documentation, 20 (2) 119-48.

10. Lieberman, H., Letizia, an agent that assists web
browsing. In Proceedings of IJCAI-95. AAAI
Press, 1995.

11. Moukas, A., Amalthaea: Information Discovery
and Filtering using a Multiagent Evolving
Ecosystem. In proceedings of the Conference on
Practical Applications of Agents and Multiagent
Technology, London, April 1996

12. Nissen, M. et al.Intelligent Agents: a Technology
and Business Aplication Analysis, BA248D:
Telecomunications and Distributed Processing,
Intelligencia, Inc, november1995.

13. Rhodes, B.J. and Starner, T., The Remembrance
Agent, AAAI Symposium on Acquisition, Learning
na Demonstration, Stanford, CA, 1996. Available
in: http://www.media.mit.edu/~rhodes
/remembrance.html

14. Rocchio, J.J. Relevance feedback in information
retrieval. In: The Smart Retrieval System -
Experiments in automatic Document Processing, p.
313-323, Englewood Cliffs: Prentice-Hall, 1971.

15. Salton, G., Automatic Text Processing – The
Transformation, Analysis and Retrieval of
Information by Computer. Addison-Wesley
Publishing Company, Inc., Reading, MA, 1989.

16. Sheth, Beerud. NEWT: A learning approach to
personalized information
filtering.Thesis.[s.l.:1994]. Available in:
http://agents.www.media.mit.edu/groups/agents/
papers/newt-thesis/ tableofcontents2_1.html.

17. Silva, E. B. BSETI - Uma Ferramenta de Auxílio à
Busca e Recuperação de Documentos - 1996.
Available in:
http://www.cos.ufrj.br/~bezerra/pf/PF.html

18. Twidale, M. B., Nichols, D. M. and Paice, C. D..
Browsing is a Collaborative Process.Tecnical
Report - CSEG/1/96-Computing Department,
Lancaster University, 1996.

19. van Rijsbergen, C. J. Information Retrieval,
Butterworths, London, Second Edition, 1979.

20. Yao, Y. Y. 1995. Measuring retrieval effectiveness
based on user preference of documents. Journal of
the American Society for Information Science
46(2):133-145.

