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ABSTRACT 
 

With the current growth of the information available 
in Internet, users are facing an information overload. This 
work proposes a multiagent system for Web pages 
personalized filtering. The system is composed of a set of 
autonomous and adaptive agents that automatically 
provide relevant documents to the user according to a 
preferences profile. The agents learn with the user 
feedback and attempt to produce better results over time. 
This work presents the system description and the 
promising results of tests performed in a simulated 
environment. The proposed system proved to be a useful 
tool to recommend successfully  relevant  information to 
a well-defined preferences  user. 

 

1 INTRODUCTION 
The use of the Internet has been growing in the last 

years with the appearance of World Wide Web. The 
exponential increase of computer systems that are 
interconnected in on-line networks has resulted in a 
corresponding increase in the amount of information 
available. Although the increase of the information 
available facilitates the spreading of knowledge and the 
acquisition of products and services, it also makes the 
search for relevant material a real challenge. New tools 
have been designed with the purpose of locating, filtering 
and organizing the huge amount of available information. 

Recent work that arises at the intersection on 
information retrieval and software agents offers some 
new solutions to this problem. Information retrieval is a 
well-established field of information science that 
addresses the retrieval from a large set of documents in 
response to user queries. Agent research is a relatively 
new field of study, which has grown out of artificial 
intelligence. 

Agents can be defined as softwares with the aim of 
performing tasks for their users, usually with autonomy, 
playing the role of personal assistants. Users can delegate 
to the agents the execution of repetitive and time-
consuming tasks. 

In order to be of real usefulness for its users, the 
agents have to learn their interests and habits using 
techniques of machine learning. They also should be able 
to adapt themselves to the changes in the users interests, 
while at the same time they explore new domains of 
potential interest to the user. 

 The present work suggests the use of autonomous 
agents for the personalized information filtering. The 
proposed system is composed of a set of  adaptive and 
non-mobile agents aiming to satisfy the user's needs for 
information. The agents receive the user's feedback about  

 
 
the relevance of the retrieved information and 

improve their search, obtaining better results over time. 
The set of agents is autonomous as it can perform its 

task without the user's presence, based on a preference 
profile previously built. Besides that, the agents can 
process information from Internet without keeping the 
connection during all the time of processing. This is one 
of the features that classify the agent as autonomous [12]. 

The system is adaptive as it learns the user's 
preferences and adapts itself when these ones change 
over time. The main agent's learning mechanisms is the 
relevance feedback, widely used in information retrieval 
systems [14]. The use of genetic algorithms [8] as a 
complementary mechanism aiming to introduce diversity 
in the system's  parameters is addressed. The information 
is represented by the vector space model [15], where  
queries and documents are represented as vectors in a 
vector space. This method was chosen for its efficiency 
proved in various works in the area of information 
retrieval [16][4] and for its relative easy implementation. 

The results presented were obtained through a series 
of sessions with simulated users. The system's efficiency 
evaluation was made through the normalized distance 
performance measure (ndpm), suggested by Yao [20]. 

This paper is organized as follows. In section 2 
there's a comparison with related works. An overview of 
concepts is given in section 3. Section 4 describes the 
system and the development methodology. The system 
architecture is detailed in section 5. The analysis of 
results is presented in section 6 and, finally, some 
conclusions are drawn in section 7. 

2 RELATED WORKS 
In the past few years many attempts have been made 

towards the development of agents that assist in dealing 
with the huge amount of information available. In the 
domain of Web , WebWatcher [2] and Lira[3] are agents 
whose actions are interleaved with the user’s browsing in 
Netscape. They run on the server-side and require explicit 
interaction to indicate interest in topics or particular 
pages. The Remembrance Agent [13] is an autonomous 
interface agent that reminds the user of relevant files 
stored on the user’s local disk. MIT Media Laboratory’ s 
Letizia [10] is an autonomous interface agent designed to 
assist and provide personalization to the user while 
browsing the WWW by performing a breadth-first search 
on the links ahead and providing navegation 
recommendations. Other agent-based systems use some 
techniques to try to detect patterns in the user's behavior. 
For instance, InfoScope [7] learns by using systems based 
on rules that register interesting topics covered in the 
past. Recommendations of new topics are based on how 
recent, frequent and spaced these past topics are. The 



main disadvantage of such approaches is that they are 
restricted to recommendations of topics within the 
domain of user's past interests.  In the same way,  assisted 
browsing systems are restricted to the sections of the Web 
visited by the user, recommending links starting from 
them. In contrast, the proposed system looks for new 
domains for information that can be of potential interest 
for the user. The user probably never saw before the 
presented topic. 

The Newt system [16] is a software agent which 
adopts relevance feedback and genetic algorithms to 
provide personalized filtering of Usenets news. The 
approach differs from the present work in the application 
domain. Besides this, Newst uses the traditional method 
of  vector-space representation, as described in [15], 
while in this work different documents representation 
were tested. 

More similar to our work with regards to application 
domain and representation are the systems built by 
Balabanovic [5] and Amalthea, proposed by Moukas 
[11]. Balabanovic proposed a multiagent system that 
combines both content-based and collaborative 
techniques applied to the web pages recommendation. 
That work adopts the vector-space model, relevance 
feedback  as the learning method based and he suggests 
the use of genetic algorithms as a possible solution for 
some of the problems found in the content-based filtering. 
Amalthea is a system that combines the concepts of 
autonomous agents and artificial life in the creation of an 
evolving ecosystem composed of competing and 
cooperating agents. A co-evolution model of information 
filtering agents that adapt to the various users interests 
and information discovery agents that monitor and adapt 
to the various on-line information sources is proposed.  

3 BACKGROUND  
The purpose of this section is to introduce basic 

concepts and definitions that lay a basis for the system 
designs and experiments to follow. Section 3.1 presents 
the idea of autonomous agents, section 3.2 gives an 
approach of information filtering systems and section 3.3 
describes the relevance feedback technique. 

3.1 Autonomous Agents 
An autonomous agent is a program that works in 

parallel with the user. Autonomy says that the agent is, 
conceptually at least, always running [10]. The agent may 
discover a condition that might interest the user and 
autonomously decide to notify him. The agent may 
remain active based on previous input after the use has 
given other commands or has even turned the computer 
off. 

The role of an agent as a personal assistant requests 
the ability to act independently and concurrently to the 
user. An assistant would not have much practical 
usefulness if he needed to receive explicit instructions 
and constant supervision during the whole time of his 
work execution. On the other hand, with autonomy, he 
can save the user's time, executing in parallel repetitive 
tasks while the user drives his attention for another tasks. 

The filtering of Web pages is a well-suited domain for 
autonomous agents. Web users claim for some kind of 
intelligent help, since the  direct-manipulation interface 
of manually following links in a browser is not enough to 
prevent them of being overloaded of irrelevant 
information. [10]. 

3.2 Information Filtering Systems 
The information filtering task involves repeated 

interactions over multiple sessions with the users having 
long-term goals. It differs from the information retrieval 
task, where the users typically have a short-term 
information need that is satisfied in a single session [16].     

Information filtering systems assist users by filtering 
the data stream and delivering the relevant information to 
the user. Information preferences greatly vary across 
users, thus, filtering systems must be highly personalized.   

Three different approaches can be identified in the 
filtering systems literature:    
• Systems based on the user's profile [6]; 
• Systems that perform filtering in a cooperative way, 

sharing information [18]; and 
• Systems that use agents, in which mobility, 

intelligence and autonomy are fundamental factors 
[12]. 

3.3 Relevance Feedback 
One of the most important and difficult operations in 

information retrieval is to generate queries that can 
succinctly identify relevant documents and reject the 
irrelevant ones. Users often submit queries containing 
terms that don't match the ones used to index most of the 
relevant documents and almost always many unretrieved 
relevant documents are indexed by different terms from 
the ones in query. This problem has long been recognized 
as a major difficulty in information retrieval systems [9].  

Since the difficulty in accomplishing a successful 
search at the first attempt is recognized, it is common to 
perform iteratively searches and reformulate query 
statement based on the evaluation of previously retrieved 
documents. The relevance feedback method is usually 
adopted for automatically generating improved query 
formulations [14]. A query can be improved iteratively by 
using an available query vector (of terms) and adding 
terms from the relevant documents, while subtracting 
terms from the irrelevant ones. A single iteration of 
relevance feedback frequently produces improvements of 
40 to 60 % in the search precision [15]. 

4 SYSTEM DESCRIPTION 
The present work proposes the use of agents for the 

personalized information filtering. The proposed system, 
named Fenix, is composed by a set of autonomous, 
adaptive and non-mobile agents, aiming to satisfy the 
users information needs. 

An agent is modeled as a set of individual profiles. 
As a whole, all the profiles in a population try to satisfy 
the user's interests and adapt themselves to these 
interests. One user may have various agents, each of them 
satisfying his/her needs for information about a certain 
subject. 



The agent is responsible for starting the execution of 
search and filtering tasks, one for each profile. As the 
tasks are autonomous, they are sub-agents in Fenix 
system. Each sub-agent, using different search engines, 
goes through the web pages looking for documents 
containing the keywords provided by the user. The set of 
documents obtained undergoes the filtering process, 
according to the adopted model. The selected documents 
are the ones with the higher degree of similarity with the 
respective profile. These documents are provided for the 
responsible agent that has to gather the results from all 
the sub-agents, to classify them according to their 
potential relevance, presenting them to the user. The user 
can provide positive or negative feedback for the 
documents. User feedback has the effect of modifying the 
profile used to retrieve that document. 

4.1 Development Methodology 
Fenix system was developed according to the object 

oriented approach. The programming language adopted 
was Java, by Sun Microsystems Inc., and the 
development environment was Jbuilder Standard 3.0, by 
Borland Corporation, that uses JDK (Java Development 
Kit) version 1.2. The system was implemented as a Java 
application to be running locally in the user's machine. 

4.2 Fenix Features 
A number of attributes can be identified on 

classifying Fenix as a software agent. These features are 
discussed below. 
Autonomy 

Fenix is able to make judgements about the 
documents relevance without the direct intervention of 
the user. Besides, when the autonomous mode is on, the 
system starts new search and filtering tasks automatically, 
based on the keywords of the user profiles. Concern to 
the execution environment, a local database is created 
after the searches and the user hasn't to keep connected to 
the Internet in the posterior stages of processing. This 
feature classifies an agent as autonomous in respect to the 
environment [12].   
Temporal Continuity 

Fenix has an autonomous mode,  in which the system 
remains active all through the time the user's machine is 
on. He runs in background until accomplishing its 
searches for all the user agents. However, the user's 
machine needs to be on, since the agents reside locally 
and not in a remote server.   
Adaptation  Ability 

Fenix learns through its learning mechanisms, 
adapting to the user's interests along the time.   
Social Ability 

Each user agent starts the execution of several 
autonomous search  and filtering tasks. At the end of all 
tasks the results are gathered by the controller agent who 
is responsible for classifying them according to its 
relevance eliminating repetitions before presenting them 
to the user. Thus, the Fenix social capacity is established 
in terms of the interactions among an agent’s tasks, which 
cooperate to each other aiming a common goal. The 

interactions are made through messages implemented in 
the programming language adopted.   
Reactivity and Pro-activeness   

The system can detect changes in the user's 
environment as, for example, a document reading and 
evaluation. In the autonomous mode, if it was detected 
that all the documents of a profile have already been 
evaluated by the user, an agent can take the initiative of 
beginning new searches.   

5 ARCHITECTURE 
Fenix system is composed of various functional 

modules (figure1). The modules are implemented as 
groups of related classes. The description of each module 
is given below. 

5.1 User Interface Module 
This module presents a graphic interface to interact 

with the user. The user's interaction with Fenix system 
begins with his registration, where he must inform his 
personal data and choose a login and a password. After 
the identification the user can choose from three options: 
to create a new agent, to load an existing one or to 
activate the autonomous mode. 

When creating a new agent, the user must choose a 
name and a background color, and provide the following 
search parameters: maximum number of documents 
shown per session (default is 30); and the query 
expression. A query in Fenix system is a combination of 
keywords (technically called terms), separated by blank 
spaces. The use of logical connectives is not allowed. The 
presence of the connective AND between the terms is 
automatically assumed. 

 As a result of the initial search, a series of retrieved 
documents is presented. After reading the chosen 
documents, the user can provide positive (+1) or negative 
(-1) feedback according to their relevance. 

The user can visualize the pages of the documents 
through the button "Shows". That button activates the 
local navigator, as, for example, the Netscape or Internet 
Explorer, that should be configured in the system. 

The user can modify a document URL, if he finds a 
more interesting link starting from the initial page, 
through the button "Alters".  He can also include a URL 
of interest manually, that has not been retrieved by the 
agent, by clicking the button “Includes”. 

When saving a newly created agent, the references to 
the documents with positive feedback will be saved (their 
URLs) and the term vector and their weights will be 
created, building the initial profiles for that agent.  

The user can also choose some URLs to be 
constantly monitored. Certain URLs are frequently 
changed and updated, and the system can be scheduled to 
verify from time to time if their contents changed. 

When loading an existing agent, the user can choose 
one from three actions: to read some retrieved document, 
to provide feedback about some document or to start a 
new search for documents. 

The Fenix "Autonomous Mode" works performing 
search and filtering tasks without interaction with the 



user. This option is totally controlled by a separate thread, 
and it works in the following way:   � the system verifies all the agents belonging to 

the user;   � for each agent, the status of all its documents is 
verified;   � in case of existing documents not read, the user 
receives the message informing about that and 
the corresponding agent's name;   � in case of all the documents of all the agents 
have already been read, the system initiates new 
searches for each user's agents; after the 
searches, a message is presented informing that 
the user should choose the option of " Shows " 
for the respective agents. 

5.2 Filtering Module 
The filtering process consists in translating 

documents to their vector representations, calculate the 
similarity between documents and profiles, and selecting 
the top-scoring documents for presentation to the user. 

Figure 1: System’s architecture 
 
The representation adopted in this work is based on 

the vector space model (VSM) [15]. According to it, 
documents and queries are represented as vectors in a 
hyperspace. A metric distance, which measures the 
proximity between vectors, is defined over space. The 
filtering results are the documents with representation 
that have the highest degree of proximity to the query 
vector. 

A standard method for indexing texts consist in 
removing punctuation marks, recognizing individual 
words, eliminating functional words (as "and", "that", etc) 
using a stop-list, and using the remaining words for 
content identification of the text. The words may also be 
truncated, leaving only their stems. This method was 
adapted for using with web pages. A further step was 
added, in which the html "tags" were identify, and most 
of them was removed, except some "meta-tags". "Meta-
tags" are commonly used to describe the pages, so they 
are suppose to be significant for content description 
purposes. 

Since the words (called "terms") are not equally 
important for content representation, weights are assigned 
to them, in proportion to their presumed importance to 
content identification purposes. A text is then represented 
as a vector of terms and a vector of related weights,   

T i = { W ij } , where W ij represents the weight of 
term t j in text T i. 

In the adopted representation, the term weight is the 
product of the term frequency and the inverse document 
frequency. This is a frequently used representation in 
information retrieval systems [15]. The term frequency 
(tf) is the occurrence frequency of the term in the text and 
it usually reflects the relevance of this term. The inverse 
document frequency (idf) is a factor that enhances the 
terms that appear in few documents, while it devaluates 
the terms occurring in many documents. As a result, the 
documents specific features are highlighted, while the 
ones spread through the set of documents have minor 
importance. The weight of the terms is then given as: 

Wij = tf ik   X   idfk,   (1) 
where tf ik is the number of occurrences of term tk in 
document i, and idf k is the inverse document frequency 
of term tk in the collection of documents. A commonly 
used measure for idf is    idf k =log (N/nk), where N is the 
total number of documents in the collection, from which 
nk contain a term tk. In this work, a collection of 
documents is formed by all the documents retrieved by a 
profile. 

A profile is a set of information about the retrieved 
documents. Such information are, for example, the 
documents location in the net (URL), the score computed 
for the system to the documents and the user's feedback 
assigned to them. Besides, it contains the vector 
representation of all documents that received positive 
feedback. The representation consists of a vector of terms 
 similar to the one previously described for documents. 

5.2.1 Evaluation of Filtered Documents 

A commonly used similarity measure in the vector 
space model is the cosine of the angle between vectors. 
Many authors suggest other measures, as we can see in 
[19]. In the proposed application, different formulae were 
tested, and it was adopted the one proposed in [15] as 
follow: 
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where "d" indicates that the field belongs to a document 
and "p" indicates that the field belongs to the profile. 

5.2.2 Scoring and Selecting Documents 

The documents retrieved through the search task 
started by the respective profile will have their 
similarities calculated in relation to that profile. The 
agents are responsible for gathering the documents 
generated by all the profiles, classifying them according 
to their similarity values, eliminating repetitions and 
presenting to the user. 



The similarity values are converted to a class scale to 
be presented to the user. This scale seems to be a more 
natural representation of the document presumed 
importance than a set of decimal values. A five points 
scale was adopted, with the adjectives: 
• Terrible: for scores equal to 0.2 
• Poor: for scores between 0.2 and 0.3 
• Neutral: for scores between 0.3 and 0.5 
• Good: for scores between 0.5 and 0.8 
• Excellent: for scores greater than 0.8 

The maximum score value is 1.0 and it only happens 
when the profile and the document representations are 
identical. In this work, the limit of 0.2 it was adopted as 
the minimum score that a document should have to be 
presented to the user. 

The user's feedback for a document has the effect of 
modifying the respective profile. The profile has to 
incorporate the changes before new documents can be 
evaluated. 

Since the term vector for a document with feedback 
is available, the profile is modified according to equation 
(3) described in the Learning Module below. The existing 
terms are weighted again, and new terms are included. 

5.3 Learning Module 
The learning methods addressed in this work were 

relevance feedback and genetic algorithms. Both methods 
were designed as independent sub-modules. At the 
present stage, the relevance feedback sub-module was 
completely implemented and tested. The specifications of 
the genetic algorithm sub-module had already been done, 
but its implementation will be a matter of future works. 

5.3.1 Relevance Feedback Sub-Module 

In the relevance feedback method, an original query 
vector (represented by the profiles) is modified based on 
the user's feedback for the documents retrieved by the 
profile. 

For vector space representations, the method for 
query reformulation in response to user's feedback is 
vector adjustment. Since queries and documents are both 
vectors, the query vector is moved closer to vector 
representing documents with positive feedback, and 
further from vectors of the documents with negative 
feedback. 

Take a profile P, which contributed to a document D 
for presentation to the user. The user provides feedback, 
which is a positive or negative integer. Each term in the 
profile is modified in proportion to the feedback received: 

∀i, k:  W ik p  = W ik p + α *  f * W ik d  (3) 
that is, the weight of each term is changed proportionally 
to the learning rate (α) and to the feedback. The learning 
rate α indicates the sensibility of the profile to the user's 
feedback, and, in general, assumes values between 0.5 
and 1 [16].  

The effect is that, for those terms already existing in 
the profile, the term weights are modified in proportion to 
the feedback. The terms not existing in the profile must 
be added to it. 

Relevance feedback is not the only way the user can 
alter the dinamycs of the system. The user can explicitly 

introduce new URLs or links he considers interesting, by 
clicking the “Alter” and “Include”  interface buttons. 

5.3.2 Genetic Algorithm Sub-Module 

In the next stage of  this work the genetic algorithm 
will be implemented as a complementary mechanism to 
introduce diversity to the search parameters as a goal. 
This goal will be achieved by recombining the contents of 
different vectors of terms belonging to the same user 
profile. Genetic operators, like mutation and crossover 
will be applied.  

The formal definition of a population P in an 
iteration t is given in the equation below. P is defined as a 
group, where each element is a pair of profile and its 
fittness:   

  P (t) = { (p, f (p))}    (4),    
  where p represents a profile and f (p) its fittness. 

Each profile is converted for a binary representation, and 
it corresponds to an individual or chromosome of the 
population. The fittness is computed based on the average 
values of similarity between the documents and their 
respective profiles. The genetic operators of crossover 
and mutation update the population to each generation, 
introducing new members and taking advantage of the 
fittest ones. The final objective is to evolve the 
population in direction to a global optimization.   

The use of genetic algorithms can possibly prevent a 
frequently reported problem in information retrieval 
works, the "over-fitting" [5]. When a profile become too 
much specialized in his users interests, the filtering 
results degraded. It occurs because the profile doesn't 
assign high scores except to the documents that exactly 
matches him. In this context, the genetic algorithm would 
be able to revitalize the profile content and to prevent the 
stagnation. 

 
 



5.4 Controlling Module 
This module is composed of three main controlling 

classes, from which all the other classes are created and 
their methods are called. Principal class controls the 
system's global behavior. It is responsible for creating 
the instances of the other controlling classes and for 
coordinating the communication among them. It's also 
responsible for calling the interface classes that 
constructs the initial window of the system. 

Agent class controls the behavior of each user's set 
of agents. It identifies the need of an agent creation and 
calls the methods of class PerfilAgente. It also receives 
and agregates the search results of different agents, 
eliminating redundancies and formatting them to 
present to the user. 

PerfilAgente class controls the specific behavior of 
each agent. It creates one agent and starts its execution, 
maintains its persistent data by accessing the local 
database and updates its contents when it is necessary. 

Furthermore, there are two classes considered as 
parts of the controlling module: threadauto, responsible 
for the autonomous behavior of the system; and 
threadBusca, that controls the search module 
execution. 

5.5 Other Modules 
The search module is responsible for gathering 

information from web pages about the chosen subject 
and saving them in a local database. With the 
development of this work, there was a choice for using 
existing search engines, such as Altavista1, Lycos 2and 
others. This module became responsible only for 
making the interface with these mechanisms, providing 
the user's keywords to them, retrieving the search 
results and storing the retrieved pages in a local 
database.  

The system database is composed of all 
information from the user, his agents and respective 
profiles, as well as the pages retrieved in searches. This 
database is implemented through a group of classes 
existent in Java standard APIs. Users and agents data 
are stored in simple text files. Profiles and documents 
are stored in object files. 

6 RESULTS 
In this work, it was adopted the performance 

measure proposed by Yao [20]. The ndpm measure 
("normalized distance-based performance measure") is 
a distance, normalized to range from 0 to 1, between the 
user's classification for a set of documents and the 
system's classification for the same documents. This 
will provide a relative measure, that will be more 
appropriate to the system's goal than recall and 
precision [17] measures, commonly used in information 
retrieval.  

An outline was adopted as suggested in [4]. A 
special list of documents is supplied to a simulated user 

                                                        
1 Available in: http://www.altavista.digital.com 
2 available in: http://www.lycos.com 

who should classify it in agreement with his interests by 
a subject. That list is randomly selected from several 
documents retrieved from the web. The system also 
ranks the documents according to how well they match 
the profile previously built for that user.  

An ordinal scale is adopted to obtain user rankings. 
The user places each document into one of the five 
categories: Excellent-Good-Neutral-Poor-Terrible. The 
scores computed by the system are converted into each 
category according to a range of values. The expected 
result is for the ndpm distance between the user and 
system classifications to decrease gradually over time, 
as the user's profile is adjusted. 

One hundred and twenty agents were created for 
thirty subjects of interest to a simulated user. For each 
subject, a certain number of simulated sessions of 
"user"-system interaction were accomplished. After an 
initial search, the agents classified the retrieved 
documents according to the categories above, the "user" 
evaluated the documents, providing their feedback 
values and classification. With the feedback, the agents 
profiles were adjusted to further searches and the 
classification is used to computer the ndpm.  

A progressive decrease of the ndpm distance along 
the sessions (figure 2) was observed, indicating that the 
agents were adapting themselves to the user's 
preferences and increasing the probability of retrieving 
a larger number of relevant documents while discarding 
the irrelevant ones. 

Several system configuration parameters were 
tested in the simulated sessions. 
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Figure 2: Average ndpm distance between user 
and system rankings, over all agents at evaluation 
points. 

 
 To sum up the final results we can say that the 
system reached the best performance when: 
• the terms of the query were more specific, in 

opposite to generic queries; 
• the agents were composed by at least 4 (four) and in 

the maximum 10 (ten) profiles; and  
• the term vectors of the documents had maximum 

size of 300 terms.   
 Nine agents were tested along  20 (twenty) sessions, 
in order to compare with the work described in [5], 



where  a multiagent system was implemented for the 
WWW pages recommendation. Balabanovic proposed 
an architecture that combined content-based with 
collaborative filtering. His system performance was also 
evaluated with the ndpm measure and the obtained 
curve had a behavior quite similar to the one presented 
in  the tests with Fenix (Figure 3). In his work 25 
evaluation sessions were accomplished. The initial 
values of ndpm average were of 0.4 and the final values 
were 0.001.   
 A question that has arisen in the tests was the low 
scalability of the system. The number of users and 
profiles is potentially increasing. As a consequence, the 
efficiency issue must be addressed. Index structures and 
algorithms have to be adopted aiming to optimize the 
profiles and documents processing in order to the 
system provides the relevant information in a timely 
fashion.  
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Figure 3: Average ndpm distance between user 

and system rankings, over 20 sessions. 
 

7 CONCLUSIONS 
      Fenix is an autonomous agent that must be able to 
specialize to user interests, to adapt when they change 
and to explore the domain for potentially relevant 
information. 
 The system proved to be a powerful tool of 
information filtering. The presented results confirmed 
that the system, using the vector-space model with 
relevance feedback as the learning mechanism is able to 
successfully filter relevant documents for a well-defined 
preferences user. 

One important contribution of this work was the 
adaptation of techniques commonly used for mail and 
usenet articles filtering to web pages filtering. 

The performance values obtained in simulated 
tests based on the ndpm measure were similar to the 
ones found in another works of information filtering. 
Balabanovic [5] proposed an approach that combines 
content-based and collaborative techniques applied to 
the WWW pages recommendation. The results 

described in his work were quite similar to the obtained 
with Fenix, in which a simpler approach was adopted.   

A problem detected during the tests was the low 
scalability of the system. As a future work, a possible 
solution for that problem is the implementation of a 
system with multiple search agents collecting pages 
web in several sources. The search agents would deposit 
the pages obtained in a central repository where 
individual users' personal agents would recover those 
that best satisfied the its users' profiles. The supplied 
feedback would go both to the personal agent (that 
would adjust the user's profile) and to the search agents, 
that would be serving the users' groups instead of 
individual users and taking advantage of the shared 
interests. 

Another subject for future works is the 
implementation of the genetic algorithm sub-module, 
aiming to optimize the results of the filtering process. 

The impact of systems like Fenix on an enterprise 
may be quite significant. Several information search 
tasks could be automated, as the system is able to filter 
and classify different interesting subjects, so reducing 
the time consumption and the money spent on those 
activities. 

Information filtering agents are a great promise to 
the management of extensive available information. 
 
REFERENCES 
 
1. Ackley, D and Littman, M, Interactions between 

Learning and Evolution. Artificial Life II, v X, pp. 
487-509. Edited by C. Langton, C. Taylor, J. 
Farmer and S. Rasmussen, Addison Wesley, 1992.  

2. Armstrong, R. et all., WebWatcher: A Learning 
Apprentice for the World Wide Web, in AAAI 
Spring Symposium on Information Gathering, 
Stanford, CA, March 1995. Available in: 
http://www.cs.cmu.edu/afs/cs/project/theo-6/web-
agent/www/project-home.html. 

3. Balabanovic, M. and Shoham, Y., Learning 
Information Retrieval Agents: Experiments with 
Automated Web Browsing, , in AAAI Spring 
Symposium on Information Gathering, Stanford, 
CA, March 1995. Available in: 
http://flamingo.stanford.edu/ users/ marko/ 
bio.html. 

4. Balabanovic, M. An Adaptive Web Page 
Recommendation Service. Stanford Universal 
Digital Libraries Project Working Papers SIDL - 
WP. 1997. 

5. Balabanovic , M. Learning to Surf: Multiagent 
Systems for Adaptive Web Page Recomendation 
Service. Dissertation submitted to the Department 
of Computer Science and the Committee on 
Graduate Studies of Stanford University. UMI 
Number: 9837173. UMI Company. 1998. 

6.  Brusilovsky, P. Adaptive Hypermedia: an attempt 
to analise and generalize.1994. Available in: 
http://www.cs.bgsu.edu/hypertext.adaptive/ 
um94.html 

7. Fischer, G., Stevens, C., Information access in 
complex, poorly structured information spaces. 



Human Factors in Computing Systems CHI'91 
Conference Proceedings, 1991, pp. 63-70.  

8. Goldberg, D. E. Genetic and Evolutionary 
Algorithms come of age. Communications of the 
ACM, 37(3):113-119, March 1994. 

9. Lancaster, F. W. 1969. "MEDLARS: Report on the 
Evaluation of Its Operating Efficiency." American 
Documentation, 20 (2) 119-48. 

10. Lieberman, H., Letizia, an agent that assists web 
browsing. In Proceedings of IJCAI-95. AAAI 
Press, 1995. 

11. Moukas, A., Amalthaea: Information Discovery 
and Filtering using a Multiagent Evolving 
Ecosystem. In proceedings of the Conference on 
Practical Applications of Agents and Multiagent 
Technology, London, April 1996 

12. Nissen, M. et al.Intelligent Agents: a Technology 
and Business Aplication Analysis, BA248D: 
Telecomunications and Distributed Processing, 
Intelligencia, Inc, november1995.  

13. Rhodes, B.J. and Starner, T., The Remembrance 
Agent, AAAI Symposium on Acquisition, Learning 
na Demonstration, Stanford, CA, 1996. Available 
in: http://www.media.mit.edu/~rhodes 
/remembrance.html 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14. Rocchio, J.J. Relevance feedback in information 
retrieval. In: The Smart Retrieval System - 
Experiments in automatic Document Processing, p. 
313-323,  Englewood Cliffs: Prentice-Hall, 1971. 

15. Salton, G., Automatic Text Processing – The 
Transformation, Analysis and Retrieval of 
Information by Computer. Addison-Wesley 
Publishing Company, Inc., Reading, MA, 1989. 

16. Sheth, Beerud. NEWT: A learning approach to 
personalized information 
filtering.Thesis.[s.l.:1994]. Available in: 
http://agents.www.media.mit.edu/groups/agents/ 
papers/newt-thesis/ tableofcontents2_1.html. 

17. Silva, E. B. BSETI - Uma Ferramenta de Auxílio à 
Busca e Recuperação de Documentos - 1996. 
Available in: 
http://www.cos.ufrj.br/~bezerra/pf/PF.html 

18. Twidale, M. B., Nichols, D. M. and Paice, C. D.. 
Browsing is a Collaborative Process.Tecnical 
Report - CSEG/1/96-Computing Department, 
Lancaster University, 1996.  

19. van Rijsbergen, C. J. Information Retrieval, 
Butterworths, London, Second Edition, 1979. 

20. Yao, Y. Y. 1995. Measuring retrieval effectiveness 
based on user preference of documents. Journal of 
the American Society for Information Science 
46(2):133-145. 

 


