

Trust Evaluation for Web Applications
based on Behavioral Analysis

Luiz Fernando Rust C. Carmo, Breno G. de Oliveira and Augusto C. Braga
Computer Center (NCE) – Federal University of Rio de Janeiro (UFRJ)

Caixa Postal 2324 – 20.010-974 – Rio de Janeiro – RJ – Brasil
{rust,breno,augustocesar}@nce.ufrj.br

Abstract. This paper deals with a joint use of a trust evaluation approach and
access control mechanisms for improving security in Web-usage. Trust
evaluation is achieved by means of both behavioral evaluation and credentials
exchange, in such way that transitions among different access policies are
automatically fired whenever a user behavior is validated. Behavioral analysis
uses machine-learning techniques to gain knowledge about users navigation
tracks, creating a user signature to be compared with a current behavior of the
respective user. This mechanism is validated through experimental evaluation.

1 Introduction

Nowadays there is a huge concern for Web application security. The public key
infrastructure (PKI) is definitely a great ally in solving many security issues,
especially those related to authentication. The difference between authentication and
authorization is discussed in [1]: (i) an authentication service proves that the identity
of an object/subject is in fact the one it claims to have; while (ii) authorization means
the grant of permission based on the authenticated identification. This latter
definition can be altered with the introduction of the “trust” concept: usually an
entity can say that it “trusts” another one whenever it assumes that the second entity
will behave exactly as it expects. This way authorization can be rewritten as the
“grant of permission based on the deposited trust”. The fact is that, maybe more
important than knowing who you are relating to, is knowing how this person/object
will behave. On the other hand, a fraudless authentication is still the best way to
foresee an announced behavior profile, and the combination of authentication with
continuous behavioral analysis enables a gradual verification of the coherence
between both factors, generating a trust consolidation.

It has been seen recently a sensitive increase in proposals to incorporate trust
based mechanisms in Web applications, Web services and ubiquitous computing.
Most of those mechanisms propose the use of digital credentials for an effective

2 Luiz Fernando Rust C. Carmo, Breno G. de Oliveira and Augusto C. Braga

management in the establishment of trust. The goal is to, after an initial
authentication stage, manage the user's demands and increase the level of trust
through the exchange of credentials in predetermined moments. In order to do that,
trust management is linked to an access control mechanism in a granular way (i.e.
RBAC [1]) so the evolution of the trust relationship implicates an alteration of the
access privileges given to this user.

A classic example of this kind of approach is the relationship between a user and
a shopping website [2]: after the authentication, the user (i) browses the site and
selects a given object to buy; at this time there is a need of more access privileges to
(ii) consolidate the payment; this transition is controlled by a credit card number
(credential example) that, in case of success, implies a trust level increase and the
attribution of a new “role” in the access policy, providing the necessary privileges
for the (iii) continuity of the operation.

This paper basically proposes a trust evaluation strategy guided not only by the
gradual disclosure of credentials, but also by a behavioral evaluation mechanism
based on the continuous analysis of the current conduct of a user vis-à-vis with its
past activities, generating the grounds for a possible evolution in the trust level. In
the previous shopping website example, if the user is an identified client, it is
possible to gradually establish a certain signature for his browsing habits in a way
that the browsing trajectory is analyzed against this signature in each new operation,
promoting an automatic increase in the trust level, without the need for an exchange
of credentials.

The basic idea is to develop a continuous user behavioral evaluation system,
where trust and access restrictions can be inflicted automatically in Web
applications. However, the mechanism is not restricted to Web applications, and the
ubiquitous computing seems to enforce even more the role of trust, not only for the
inherently high decentralization, but also for the propagated non-intrusive modus
operandi. In this kind of application, trust would completely replace traditional
authentication methods, supporting the concept of free users (without certificates,
logins or passwords).

Web services are also gaining increased importance as technologies enabling the
development of service oriented distributed applications. And, along with the
crescent number of services, specially in corporate networks, there is also a growth
in the complexity required to authenticate and administrate user privileges, creating a
favorable environment for the use of the trust concept [3].

2 Related Work

Approaches bringing together access control policy models and trust managers are
relatively new and seek the establishment of trust in a gradual and interactive way, to
dynamically update access privileges [4].

In [2] it is proposed a trust negotiation framework (Trust-Serv) for Web services.
The trust relationship evolves through the exchange of credentials controlled by a
state machine associated with the application. Some examples of credentials are
credit cards, passports and membership documents. The credential attributes are

Trust Evaluation for Web Applications based on Behavioral Analysis 3

evaluated in order to enable, or not, a state movement and the corresponding
alteration in the user's access profile. [5] proposes an adaptive access control and
trust negotiation framework that combines an access control and authorization API
and a trust manager (TrustBuilder), in order to control when, and how, sensitive
information can be revealed. This proposal is based on a reactive analysis in face of a
failure event, i.e, wrong credentials, implicates a greater suspicion level on a user,
which in turn implicates in access privilege restrictions.

Both previous works use credentials to inflict security: the difference is that the
former is proactive — increasing trust upon success, and the latter is reactive —
increasing the suspicion (lowering trust) upon failure. This article’s approach does
not discard the use of credentials, but suggests a joint use of behavioral analysis for
trust evolution.

[3] proposes a trust evaluation mechanism in Web services based in behavioral
analysis through continuous tracking of a user. The goal is to provide a self-
manageable mechanism for access control in an environment of Web services
federations. The trust level is exponentially modeled as a function of the services
required by the user: increases for certain classes of expected services and decreases
for others.

One of the main differences between this approach and the proposed work is in
the way that the user's behavior is evaluated. Basically, previous proposal start from
an initial mapping of services/functions available in the provider in predetermined
paths that, if followed, enables one to increase the trust on the user. Our proposal
evaluates the user's behavior in function of his past (usage logs) with the purpose of
increasing the trust on a user's identity (if he is really who he claims to be), using a
learning based behavioral analysis technique.

Security systems based on behavioral analysis by learning can be classified in
two categories according to the kind of “behavior” studied: (i) Physical behavior –
attempts to learn some personal characteristic of a user, i.e: patterns in keyboard
typing or mouse use; and (ii) contextual behavior – attempts to learn a user's service
utilization profile, i.e: UNIX commands, Web navigation, etc. The first category is
strongly related to complementary authentication mechanisms, while the latter is
disseminated in the Intrusion Detection domain.

A heavily explored approach in literature, in the “physical behavior” category,
consists of generating a signature from the individual dynamics of keyboard use [6,
7, 8]. Basically, this method does not use the information being typed, but the
rhythm in which it is typed — time gap between two key strokes and duration of a
key stroke. Collected data are modeled in fixed length arrays and, for each new
authentication, a new array is created and compared to the initial one, generating a
similarity index. This method offers as its main disadvantage the current tendency
for the obsolescence of text-based interfaces over mouse-driven ones.

[9] proposes a re-authentication mechanism based on mouse movements. This
mechanism captures mouse information (instant position, click, double click, etc)
and, after creating a regular behavior model, uses a decision tree classifier to validate
the current behavior and re-authenticate the user.

An example of contextual behavioral analysis approach is the work of [10] for
anomaly detection, comprising both intrusion detection and the identification of
hostile behavior of authenticated users. The focus of this work is the analysis of

4 Luiz Fernando Rust C. Carmo, Breno G. de Oliveira and Augusto C. Braga

command lines against the history of commands issued by the user, through
Instance-based Learning (IBL) [11]. Unlike the proposal of this article, there is no
concern in characterizing a user's individual behavior, but only in classify it as
“normal”.

Another kind of user's behavioral analysis approach, directly related to Web
applications, is directed to the customization of a website's navigability. [12] propose
the use of data mining techniques on Web logs, in order to inflict upon different
user's access profiles and, automatically, adapt a website’s navigation options.

In conclusion, the innovative character of the approach presented in this work is
supported by two main factors:

1. the use of a learning based behavioral evaluation mechanism to offer
grounds for the evolution of trust;

2. proposal of a behavioral evaluation mechanism based on Web navigation
path analysis, superimposed to a historical contextual signature.

3 Trust Evaluation

The concept of trust used in this work can be informally defined as a measurement of
how sure the application provider is about the identity of a user and, consequently, of
the way in which the user will behave.

In [2] the evolution of trust is controlled by a finite state machine (Trust-Serv
model) previously specified, where the states represent the current level of trust in a
relationship. Each state is associated to a specific access policy (i.e.: a role in a
RBAC model), while the state transition is controlled by exchange of credentials,
predictions/obligations (services that need to be executed first) and timeouts. Figure
1 describes a small excerpt of a state machine example used in the trust negotiation
in Trust-Serv. This machine has two states, Client and Reviewer, each with its own
required level of trust and controlled by a specific access policy (A & B). The
transition between these two states is safeguarded by the exchange of credentials
address and credit card.

Fig. 1: Trust negotiation model

The concept of trust level/access policy is captured by the definition of a macro-
state, while states represent the pages of a web application. A change from one
macro-state to another (implying a change in the access policy) is performed
automatically by the result of a behavioral evaluation or, in case of insuccess, by an
explicit negotiation via exchange of credentials (figure 2).

Definition 3.1. A trust evaluation scenery C is defined by the 6-tuple:

(MacroStatesC, StatesC, TransitionsC, ProfilesC, φC, ωC)

Client Reviewer
Cred[Address & Card number]

A B

Trust Evaluation for Web Applications based on Behavioral Analysis 5

• MacroStatesC is the set of macro-states of C, where each macro-state M is a
subset of StatesC

• StatesC is the set of states of C (pages)
• TransitionsC is the set of transitions of C
• Profiles is the set of access profiles (roles) associated to C
• φC transition attribution function, that associates every transition to a state

of origin and to a states of destination
φC: Transitions → StatesC x StatesC

• ωC is the access profile attribution function, that associates each profile to a
set of macro states

ωC: ProfilesC → Set of the parts of Macro-StatesC

Fig.2: Macro-states x Trust evaluation

Definition 3.2. The specific transitions between the macro states may be captured by
the set denominated:

MacroTransitionsC = {t ∈ TransitionsC | φ(t) = (a,b) ∧ (a∈ m1, b∈ m2 : m1≠ m2)}

Definition 3.3. Let VC be the subset of MacroTransitionsC experimented during the
user’s section in a C scenario, let the BehaviouralTrust and the Credential be
function with VC domain and boolean range, the user’s section is set according to the
evaluation strategy proposed if the following condition is satisfied :

 ∀ t ∈ VC : BehavioralTrust (t) ∨ Credential(t) = true

It is important to stand out that there is a dependence relationship between the result
of the evaluation of the behavioral trust and the execution of the evaluation through
credentials; the second one goes only in the case of a negative evaluation of the first
(figure 2). This kind of approach, practically establishing the credentials switch as a
redundancy, has significant impacts in the requirements imposed to the behavioral
analysis’ mechanisms. The concern with false negatives almost disappears since the
non-identification of a user’s behavior doesn’t cause any degradation in the section
in course, it only leads to the solving of the redundant step of credentials’ exchange.
On the other hand, a single use of behavioral evaluation would make possible to find
out the following anomalous conducts: (i) a system’s authenticated user that makes a
legitimate use to abuse of the system’s resources, (ii) the sporadic use by a colleague
at work “that asks to borrow” a workstation, (iii) an automated attack launched by a

a

c

b

g

h

f

e

i

d k

j

l

n

o

m

Behavioral
Analysis

ok?

Credentials
Exchange

ok?

no

yes

yesno

Macro-state X Macro-state Y

6 Luiz Fernando Rust C. Carmo, Breno G. de Oliveira and Augusto C. Braga

relatively naive user through a typical sequence of attacks. With the combined use
of a credentials’ exchange mechanism, the condition (i) naturally looses its’
effectiveness, since it is very probable that an authenticated user be also successful in
an exchange of credentials.

Fig. 3: Example of behavioral instance

4 Behavioral evaluation

This section analyzes the problem of behavioral evaluation through learning, in a
way that characterizes and differentiates each individual/system’s behavior in terms
of a discrete data sequence. The characterization of a user’s typical behavior is a
great challenge, because, besides the inherent variability, there is a change in the
regular used pattern as a natural consequence of the user’s absorption of new
knowledge. The use of a learning machine allows training a classifier with a user’s
historical data, so that it is possible to distinguish different behaviors, considering
both variability and the evolutive aspect. In this section we examine methods to
collect a user’s behavioral signature based on learning, and the appropriate definition
of similarity according to the required context.

4.1 Behavioral Signature Collecting

Many of the traditional learning approaches is not suitable for behavioral
differentiation due to the class of data being processed, i.e. discrete elements with
nominal values. Neural networks [13] have proved to be useful to continuous series
of numerical values, typically using Euclidean Distance for similarity computation,
but there is a major limitation for using it in behavioral differentiation: the necessity
of retraining for every new user [6]. A very popular and generic class of learning
machine techniques is the Instance-based Learning (IBL). In this model, a concept is
represented implicitly by a set of instances that exemplify it (dictionary). In our
situation, it is possible to directly apply a very simple method of the IBL learning
model, in which every behavioral instance is directly classified according to the
generating user. This way, the behavioral signature is represented by a set of a
specific user's behavioral instances (figure 3), generated in every macro-transition.

a

c

b

e

g

f

j

i

h

d

l

n

a
c
f
g
k

a
c
f
g
k

k

Behavioral
Instance

=

a

c

b

e

g

f

j

i

h

d

l

n

a
c
f
g
k

a
c
f
g
k

k

Behavioral
Instance

=

a
c
f
g
k

a
c
f
g
k

k

Behavioral
Instance

=

Trust Evaluation for Web Applications based on Behavioral Analysis 7

Definition 4.1. Let I be a set of indexes; the behavioral instance concept ic and the
behavioral signature ac may be defined as:

ic = {ei ∈ StatesC | i ∈ I}
ac ={ici | i ∈ I}

4.2 Behavioral Trust Measure

The degree of similarity S is a function of two behavioral instances which expresses
a measure of how alike those behaviors are. We examined several measures for
computing the similarity between two discrete-valued temporal instances. Here we
describe the measure that we found performs the best on average in empirical
evaluations. Basically, this procedure must pinpoints pairs of identical elements and
uses a cumulative calculation to give a bigger weight to identical enchained pairs
(isentical subsequences). A fundamental requirement for this calculation is no
restriction about different sizes between ic sequences (i.e.: {a,b,c,d} & {a,g,d}).

Definition 4.2. Let a and b be two behavioral instances; a preprocessing procedure is
captured by the function:
 τ (a,b) = ({z0, z1, … zm-1},{w0, w1, … wn-1})

Where {z0, z1, … zm-1} is the set of the length of identical subsequences between a
and b; {w0, w1, … wn-1} is the set of the length of different subsequences between a
and b; and the behavior of the function τ is expressed by the pseudocode of fig.4.

Fig. 4: Pseudocode of τ(a,b) function

For example: considering an ic pair {a,g,b,c,d} and {a,b,c,d}, the application of the
preprocessing function returns: (i) the set {1,3} meaning two identical subsequences:
one of 1 element (a) and other of 3 elements (b,c,d); and (ii) the set {1} meaning one
different subsequence of 1 element (g).

Definition 4.2. Let (X,Y) = τ (a,b), the similarity degree S between a =(a0, a1, … am-1)
and b = (b0, b1, … bm-1) is given by the following trio of functions:
 δ(X,Y) = Sum(X) – Sum(Y) | Sum(c0, c1, … cm-1) ∑

−

=
−=

1

0
12

m

i
ic (1)

τ(a,b)
Let pi be any position of an array i
Let w, z be arrays of variable length
Let pa, pb, pw, pz equals the first position of

a, b, w, z respectively
For each pa in {pa until last position of a}, do

If pa equals pb , then
If pw > 0, then

Advances pw to the next position of w
Add 1 to pz

Else, then
If pz > 0, then

Advances pz to the next position of z
Let pt equals the first position of b
Let found equals FALSE

For each pt in {pt until last position of b},
do

If pt equals pa, then
Let pb equals pt
If pw > 0, then

Advances pw to the next position of w
Let found = TRUE
Add 1 to pz
Leave the inner loop

If found equals TRUE
Add 1 to pw

Advances pb to the next position of array b
Return arrays z e w

8 Luiz Fernando Rust C. Carmo, Breno G. de Oliveira and Augusto C. Braga

<

≥
=′

)()(
)),((
)),((

)()(
)),((
)),((

),(
bcardacardif

bb
ab

bcardacardif
aa
ba

baS

τδ
τδ
τδ
τδ

 (2)

 S(a,b) =
2

1+S'(a,b) (3)

The advantage of this type of calculation lies on the possibility to adjust the
importance given to sequential states by just exchanging the Sum function. Figure 5
shows a comparison between the similarity values obtained from the set of
behavioral instances pairs from table 1 for both the linear equation given in (1) and
the exponential one defined in (4). It is clear that the linear formula is more sensitive
to small differences among sequences, which is the behavior we were looking for.

 Sum(c0, c1, … cm-1) ∑
−

=

−=
1

0

13
m

i

ci (4)

Table 1. Similarity for linear and exponential function Sum

a a g b c d a g b c d a g a b d d a b c d e f g h a a b a b c d
b a b c d g a b c d a b c d d e f g h a b c d

Linear 0.7775 0.8885 0.7272 0.6330 0.9230
Exponential 0.5555 0.5679 0.5102 0.5164 0.5212

Using S (similarity) is possible to calculate three independent factors that need to be
considered in trust : Comparative similarity, Intra-similarity and Inter-similarity.

Comparative Similarity (Scomp) – represents the similitude between the current
collected instance and the set of instances that form the signature. Essentially, its
value mirrors how close this behavior is from the previously captured ones. To
perform this calculation, a similarity function is applied between the current
behavioral instance and every instance that form the signature, retaining the
maximum value obtained:
 }),,(max{ MM

i
M
i

M
cur

M acicicicSScomp ∈∀= (5)
where iccur denotes the current computational instance, and acM denotes the
behavioral signature of the macro-transition M.

Intra-Similarity (Sintra) – is related to the quality of the user's signature, being
completely independent of the current behavioral instance sample. This represents if
a user has a well-formed behavior (when signature instances are repeated, or slightly
different), or the opposite (when all signature instances are very different amongst
themselves). Naturally, a bad-formed signature makes the user's behavioral
validation process difficult. To calculate Sintra, we calculate the mean among every
resulting values of the similarity function between all 2 to 2 arrangements of the
signature instances:

2),(

),(

M

MM
n

MM
m

accard

acic acic

M
n

M
m

M

A

icicS

Sintra
∑ ∑

∈∀ ∈∀= (6)

Trust Evaluation for Web Applications based on Behavioral Analysis 9

Inter-Similarity (Sinter) – represents the quality of a user signature in function of the
complete set of signatures (from different users) associated to the same macro-
transition. A given behavioral instance can be extremely similar to a well-formed
signature, and even so, not be trusted due to a possible similarity with other existent
signatures (from several users from the same scenery). Signature similarity makes
the user differentiation process difficult. Sinter reflects the similarity between a
given signature and the signature most “alike” from the full set of signatures, and is
expressed by the following pair of functions:

)(

}),,(max{

),(
M

M
i

M
m

M
m

acic

M
n

MM

accard

acicicicS

acac
MM

n
i

∈∀

=Φ

∑
∈∀ (7)

 }}{),,(max{1)(MMM
i

MMM acUacacacacSinter i −∈∀Φ−= (8)
where UM denotes the full set of signatures associated to M from a scenario
C.

Finally, trust calculation (Trust) is expressed by the product of these three factors:
 TrustM = ScompM*SintraM*SinterM (9)

Given that trust can be quantified, all there is left is to establish a minimal
acceptance level TrustRef to evaluate the function BehavioralTrust (definition 3.3):

<
≥

=
TrustRefTrustifFalse
TrustRefTrustifTrue

 Trust(M) Behavioral M

M
 (10)

5 Experimental evaluation

The performance of a mechanism such as this is strongly influenced by the kind of
application and the variety of intrinsic behaviors. Empirical analysis, performed on
concrete usage examples as test environments, have been largely used for testing
purposes in similar proposals, as [9, 13]. The major problem of this kind of approach
is the danger of selecting an extremely inappropriate environment, generating a
possible false negative evaluation of the mechanism; or, on the other hand, an
extremely appropriate one, which would also lead to a false conclusion of a
questionable effectiveness, certainly unadvisable to be generalized. We chose not to
develop a perfectly suitable website model for the simulation, but rather to perceive
how the mechanism would behave in different environments that were not initially
devised to support macrostates or trust evaluation systems.

The first step was to find ways to adjust the requirements of the trust evaluation
model in a regular website log. The following items had to be assessed consistently:
(i) States and Macrostates definition and (ii) Users and user's behavioral instances

Each possible state e of the website was defined as a HTML or PHP web page,
logged via a HTTP GET requests. Other requests, mostly for images and stylesheets,
were discarded. As no user authentication was provided, an user u was defined as
any known static IP address. Also, since no macrostate boundaries were available,
every state e was defined as part of the same macrostate M and the following
conventions were adopted: (i) behavioral instances with less than 5 states would not

10 Luiz Fernando Rust C. Carmo, Breno G. de Oliveira and Augusto C. Braga

be considered; and (ii) a behavioral instance is said to have ended when more than 30
minutes have passed from the last state included in the instance until the next state
entered by the same user. Those rules suffice the need to distinguish between
behavioral instances of the same user and prevent the model from analyzing
instances too small to be meaningful.

We have experimented with our approach on logs collected at the Computing
Center Department, Federal University of Rio de Janeiro. We examined the Web-
server logs of different applications through the trust model perspective to see what
kind and quality of usage patterns were available.

The first website collected (UFRJ virtual library - www.bibvirtuais.ufrj.br) was
not appropriate for not showing the actual IP addressess of the machines that made
the HTTP requests. The second one (UFRJ Architecture and Urbanism school -
www.fau.ufrj.br), although well structured (for macrostate adaptation), has a poor
navigation diversity to generate different signatures (very low Sinter value). The last
website (UFRJ Libraries and Information System - www.sibi.ufrj.br) showed none of
the above problems and therefore was chosen for the model evaluation. We collected
access logs from march 31st to september 6th 2006 (160 days), and then devised a
parser to (i) anonymize all entries, replacing IP addresses and webpages by index
numbers; (ii) remove all but those IP addresses known to be unique to a single user's
computer; (iii) remove any sequential state repetitions (page reloads), as the model
does not predict state transitions to itself; (iv) ignore requests to non-existent
webpages, considering only the ones with a server return status of 200 (OK) or 304
(Not Modified); (v) ignore instances with less than 5 states; and (vi) ignore
signatures with less than 5 instances, the empirical minimum value established for
the evaluation. The result was 42 valid behavioral signatures files ready to be tested
by the model prototype. The SIntra values (figure 5) give a clear understanding of
whether the signatures are good or not, for example: user 34 has little difference
between its internal behavioral instances, while user 38 had most of its instances
remarkably differentiated among them.

Fig.5: Sintra measures Table 2. TrustRef Evaluation

To simulate the user's input, we retrieved a random behavioral instance from inside
each user's own signature database, leaving it with n – 1 instances, with n being the
original number of instances inside the signature. The simulation evaluated every

0

0,2

0,4

0,6

0,8

1 5 9 13 17 21 25 29 33 37 41
Users

Sintra

Trust
Ref

Users
Accepted

False
Pos

False
Neg

0.070 42
(100%)

39
(93%)

0
(0%)

0.120 29
(69%)

3
(7%)

13
(31%)

0.150 16
(38%)

1
(2%)

26
(62%)

Trust Evaluation for Web Applications based on Behavioral Analysis 11

user's input against each signature, and calculated the Trust value for each case. The
purpose was to see whether the highest Trust value was indeed from the same user as
the signature in question.

Figure 6 shows a comparison between the mean values of the actual Trust
evaluation obtained for each signature against the best false positive result for that
signature (i.e. input from a different user that achieved the best Trust result against
that signature). It is relevant to notice that, of all simulations performed with those
42 signatures, absolutely none held a user whose Trust evaluation was higher than
the actual owner of the signature being tested. Another pertinent issue lies on the
significantly low Trust values obtained, mostly because the experiment had rather
low Sinter values, with a mean value of 0.365, indicating little difference between
signatures. Even so, it was still possible to differentiate behaviors from the Trust
results and establish possible positions for a TrustRef mark to be set, considering the
desired amount of false positives and false negatives, as shown in Table 2.

Fig. 6: Real Trust x Best false Trust

5 Conclusions and Future Work

This paper described a proposal for an integrated use of the concept of trust and
access control management in secure Web applications. The originality of the
approach lies on the employ of a user’s behavioral evaluation mechanism (via Web
navigation track) through a learning machine. The result of this analysis is used in
the trust evolution process to replace, or complement, the classic use of mechanisms
for credentials exchange. An important contribution of this work is the similarity
measure between two representative samples of a user's behavior that, unlike the
usual, compares behavioral sequences of different lengths.

It is also noticeable the extent of the proposed heuristics in the calculation of the
trust level of a behavioral instance, which takes into account three different factors:
(i) comparative similarity – relationship between the current behavioral instance and
the signature (behavior resemblance), (ii) intra-similarity – relationship between
behavioral instances that form the signature (quality of the signature) and (ii) inter-
similarity – relationship between the different existing signatures (signature
differentiability).

0

0,1

0,2

0,3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Users

Tr
us

t

Real Trust

Best false Trust

12 Luiz Fernando Rust C. Carmo, Breno G. de Oliveira and Augusto C. Braga

The performance of the proposed mechanism is well characterized by
experimental evaluation that, besides attesting the viability of its utilization in the
behavioral differentiation context, give some important subsides for the
establishment of a minimal trust level TrustRef.

An open question in the proposed approach, and subject of ongoing works,
concerns the necessity of the use of data reduction techniques, once the signatures
store all of a user's past behavioral instances. For certain applications, that allow a
great variability of behaviors, the signature size may grow considerably. It is under
study the viability of the replacement of a set of similar behavioral instances for
generic models that capture a certain degree of variability. Another work in progress
tries to characterize a timetable of the behavior of a certain user, allowing the
removal of old behaviors from his signature that should not reoccur.

6 References

1. J. Lopez, R. Oppliger and G. Pernul, Authentication and authorization
infrastructures (AAIs): a comparative survey, Computers & Security, 23 - 2004,
Elsevier, pp. 578-590.

2. H. Skogsrud, B. Benatallah and F. Casati, Model-Driven Trust Negotiation for Web
Services, IEEE Internet Computing, 1089-7801/03, Nov/Dec 2003, pp. 45-52.

3. C. Platzer, Trust-based Security in Web Services, Master‘s Thesis, Information
Systems Institute, Technical University of Vienna, Austria, 2004.

4. J. Bacon, K. Moody and W. Yao, Access Control and Trust in The Use of Widely
Distributed Services, Software-Practice Experience, 33, 2003, pp. 375–394.

5. R. Tatyana, L. Zhou, C. Neuman, T. Leithead and K.E. Seamons, Adaptive trust
negotiation and access control, In tenth ACM symposium on Access control models
and technologies, ACM Press, Stockholm, Sweden, 2005.

6. F. Monrose and A. Rubin, Authentication via Keystroke Dynamics, In Fourth ACM
Conference on Computer and Communication Security - CCS 97, Zurich,
Switzerland, 1997, pp. 48-56,

7. A. Guven, and I. Sogukpinar, Understanding Users’ Keystroke Patterns for
Computer Access Security, Computers & Security, Elsevier, Vol. 22-8, 2003, pp.
695-706.

8. A. Peacock, X. Ke and M. Wilkerson, Typing Patterns: A Key to User
Identification, IEEE Security & Privacy, September/October, 2004, pp. 40-47.

9. M. Pusara and C.E. Brodley, (2004). “User Re-Authentication via Mouse
Movements, In CCS Workshop on Visualization and Data Mining for Computer
Security -VizSEC/DMSEC'04, ACM press, Washington, DC, USA, October, 2004.

10. T. Lane, and C. Brodley, Temporal Sequence Learning and Data Reduction for
Anomaly Detection, ACM Transactions on Information and System Security, Vol. 2,
No. 3, August, 1999, pp. 295–331.

11. D.W. Aha, D. Kibler and M.K Albert, Instance-based learning algorithms”, Machine
Learning, Kluwer Academic Publishers, Vol. 6, No 1, January, 1991, pp. 37–66.

12. M. El-Ramly and S. Stroulia, Analysis of Web-usage behavior for focused Web
sites: a case study”, Journal of Software Maintenance and Evolution: Research and
Practice, No. 16, 2004, pp. 129–150.

13. T. Lane, “Machine learning techniques for the computer security”. Ph.D. thesis,
Purdue University, 2000.

