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Abstract. This paper deals with a joint use of a trust evaluation approach and 
access control mechanisms for improving security in Web-usage. Trust 
evaluation is achieved by means of both behavioral evaluation and credentials 
exchange, in such way that transitions among different access policies are 
automatically fired whenever a user behavior is validated. Behavioral analysis 
uses machine-learning techniques to gain knowledge about users navigation 
tracks, creating a user signature to be compared with a current behavior of the 
respective user.  This mechanism is validated through experimental evaluation. 

1 Introduction 

Nowadays there is a huge concern for Web application security. The public key 
infrastructure (PKI) is definitely a great ally in solving many security issues, 
especially those related to authentication. The difference between authentication and 
authorization is discussed in [1]: (i) an authentication service proves that the identity 
of an object/subject is in fact the one it claims to have; while (ii) authorization means 
the grant of permission based on the authenticated identification. This latter 
definition can be altered with the introduction of the “trust” concept: usually an 
entity can say that it “trusts” another one whenever it assumes that the second entity 
will behave exactly as it expects. This way authorization can be rewritten as the 
“grant of permission based on the deposited trust”. The fact is that, maybe more 
important than knowing who you are relating to, is knowing how this person/object 
will behave. On the other hand, a fraudless authentication is still the best way to 
foresee an announced behavior profile, and the combination of authentication with 
continuous behavioral analysis enables a gradual verification of the coherence 
between both factors, generating a trust consolidation. 

It has been seen recently a sensitive increase in proposals to incorporate trust 
based mechanisms in Web applications, Web services and ubiquitous computing. 
Most of those mechanisms propose the use of digital credentials for an effective 
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management in the establishment of trust. The goal is to, after an initial 
authentication stage, manage the user's demands and increase the level of trust 
through the exchange of credentials in predetermined moments. In order to do that, 
trust management is linked to an access control mechanism in a granular way (i.e. 
RBAC [1]) so the evolution of the trust relationship implicates an alteration of the 
access privileges given to this user. 

A classic example of this kind of approach is the relationship between a user and 
a shopping website [2]: after the authentication, the user (i) browses the site and 
selects a given object to buy; at this time there is a need of more access privileges to 
(ii) consolidate the payment; this transition is controlled by a credit card number 
(credential example) that, in case of success, implies a trust level increase and the 
attribution of a new “role” in the access policy, providing the necessary privileges 
for the (iii) continuity of the operation. 

This paper basically proposes a trust evaluation strategy guided not only by the 
gradual disclosure of credentials, but also by a behavioral evaluation mechanism 
based on the continuous analysis of the current conduct of a user vis-à-vis with its 
past activities, generating the grounds for a possible evolution in the trust level. In 
the previous shopping website example, if the user is an identified client, it is 
possible to gradually establish a certain signature for his browsing habits in a way 
that the browsing trajectory is analyzed against this signature in each new operation, 
promoting an automatic increase in the trust level, without the need for an exchange 
of credentials.  

The basic idea is to develop a continuous user behavioral evaluation system, 
where trust and access restrictions can be inflicted automatically in Web 
applications. However, the mechanism is not restricted to Web applications, and the 
ubiquitous computing seems to enforce even more the role of trust, not only for the 
inherently high decentralization, but also for the propagated non-intrusive modus 
operandi. In this kind of application, trust would completely replace traditional 
authentication methods, supporting the concept of free users (without certificates, 
logins or passwords).  

Web services are also gaining increased importance as technologies enabling the 
development of service oriented distributed applications. And, along with the 
crescent number of services, specially in corporate networks, there is also a growth 
in the complexity required to authenticate and administrate user privileges, creating a 
favorable environment for the use of the trust concept [3]. 

2 Related Work 

Approaches bringing together access control policy models and trust managers are 
relatively new and seek the establishment of trust in a gradual and interactive way, to 
dynamically update access privileges [4]. 

In [2] it is proposed a trust negotiation framework  (Trust-Serv) for Web services. 
The trust relationship evolves through the exchange of credentials controlled by a 
state machine associated with the application. Some examples of credentials are 
credit cards, passports and membership documents. The credential attributes are 
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evaluated in order to enable, or not, a state movement and the corresponding 
alteration in the user's access profile. [5] proposes an adaptive access control and 
trust negotiation framework that combines an access control and authorization API 
and a trust manager (TrustBuilder), in order to control when, and how, sensitive 
information can be revealed. This proposal is based on a reactive analysis in face of a 
failure event, i.e, wrong credentials, implicates a greater suspicion level on a user, 
which in turn implicates in access privilege restrictions.  

Both previous works use credentials to inflict security: the difference is that the 
former is proactive — increasing trust upon success, and the latter is reactive — 
increasing the suspicion (lowering trust) upon failure. This article’s approach does 
not discard the use of credentials, but suggests a joint use of behavioral analysis for 
trust evolution.  

[3] proposes a trust evaluation mechanism in Web services based in behavioral 
analysis through continuous tracking of a user. The goal is to provide a self-
manageable mechanism for access control in an environment of Web services 
federations. The trust level is exponentially modeled as a function of the services 
required by the user: increases for certain classes of expected services and decreases 
for others. 

One of the main differences between this approach  and the proposed work is in 
the way that the user's behavior is evaluated. Basically, previous proposal start from 
an initial mapping of services/functions available in the provider in predetermined 
paths that, if followed, enables one to increase the trust on the user. Our proposal 
evaluates the user's behavior in function of his past (usage logs) with the purpose of 
increasing the trust on a user's identity (if he is really who he claims to be), using a 
learning based behavioral analysis technique. 

Security systems based on behavioral analysis by learning can be classified in 
two categories according to the kind of “behavior” studied: (i) Physical behavior – 
attempts to learn some personal characteristic of a user, i.e: patterns in keyboard 
typing or mouse use; and (ii) contextual behavior – attempts to learn a user's service 
utilization profile, i.e: UNIX commands, Web navigation, etc. The first category is 
strongly related to complementary authentication mechanisms, while the latter is 
disseminated in the Intrusion Detection domain.  

A heavily explored approach in literature, in the “physical behavior” category, 
consists of generating a signature from the individual dynamics of keyboard use [6, 
7, 8]. Basically, this method does not use the information being typed, but the 
rhythm in which it is typed — time gap between two key strokes and duration of a 
key stroke. Collected data are modeled in fixed length arrays and, for each new 
authentication, a new array is created and compared to the initial one, generating a 
similarity index. This method offers as its main disadvantage the current tendency 
for the obsolescence of text-based interfaces over mouse-driven ones. 

[9] proposes a re-authentication mechanism based on mouse movements. This 
mechanism captures mouse information (instant position, click, double click, etc) 
and, after creating a regular behavior model, uses a decision tree classifier to validate 
the current behavior and re-authenticate the user. 

An example of contextual behavioral analysis approach is the work of [10] for 
anomaly detection, comprising both intrusion detection and the identification of 
hostile behavior of authenticated users. The focus of this work is the analysis of 



4 Luiz Fernando Rust C. Carmo, Breno G. de Oliveira  and Augusto C. Braga 
 

command lines against the history of commands issued by the user, through 
Instance-based Learning (IBL) [11]. Unlike the proposal of this article, there is no 
concern in characterizing a user's individual behavior, but only in classify it as 
“normal”.  

Another kind of user's behavioral analysis approach, directly related to Web 
applications, is directed to the customization of a website's navigability. [12] propose 
the use of data mining techniques on Web logs, in order to inflict upon different 
user's access profiles and, automatically, adapt a website’s navigation options. 

In conclusion, the innovative character of the approach presented in this work is 
supported by two main factors: 

1. the use of a learning based behavioral evaluation mechanism to offer 
grounds for the evolution of trust; 

2. proposal of a behavioral evaluation mechanism based on Web navigation 
path analysis, superimposed to a historical contextual signature. 

3 Trust Evaluation 

The concept of trust used in this work can be informally defined as a measurement of 
how sure the application provider is about the identity of a user and, consequently, of 
the way in which the user will behave.  

In [2] the evolution of trust is controlled by a finite state machine (Trust-Serv 
model) previously specified, where the states represent the current level of trust in a 
relationship. Each state is associated to a specific access policy (i.e.: a role in a 
RBAC model), while the state transition is controlled by exchange of credentials, 
predictions/obligations (services that need to be executed first) and timeouts. Figure 
1 describes a small excerpt of a state machine example used in the trust negotiation 
in Trust-Serv. This machine has two states, Client and Reviewer, each with its own 
required level of trust and controlled by a specific access policy (A & B). The 
transition between these two states is safeguarded by the exchange of credentials 
address and credit card. 

Fig. 1: Trust negotiation model 

The concept of trust level/access policy is captured by the definition of a macro-
state, while states represent the pages of a web application. A change from one 
macro-state to another (implying a change in the access policy) is performed 
automatically by the result of a behavioral evaluation or, in case of insuccess, by an 
explicit negotiation via exchange of credentials (figure 2). 

 
Definition 3.1. A trust evaluation scenery C is defined by the 6-tuple: 

(MacroStatesC, StatesC, TransitionsC, ProfilesC, φC, ωC) 

Client Reviewer
Cred[Address & Card number ]

A B
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• MacroStatesC is the set of macro-states of C, where each macro-state M is a 
subset of StatesC  

• StatesC is the set of states of C (pages) 
• TransitionsC is the set of transitions of C 
• Profiles is the set of access profiles (roles) associated to C 
• φC transition attribution function, that associates every transition to a state 

of origin and to a states of destination 
φC: Transitions → StatesC x StatesC 

• ωC is the access profile attribution function, that associates each profile to a 
set of macro states 

ωC: ProfilesC → Set of the parts of Macro-StatesC 

Fig.2: Macro-states x Trust evaluation  

Definition 3.2. The specific transitions between the macro states may be captured by 
the set denominated:  

MacroTransitionsC  = {t ∈ TransitionsC | φ(t) = (a,b) ∧ (a∈ m1, b∈ m2 : m1≠ m2)} 
 

Definition 3.3. Let VC be the subset of MacroTransitionsC experimented during the 
user’s section in a C scenario, let the BehaviouralTrust and the Credential be 
function with  VC domain and boolean range, the user’s section is set according to the 
evaluation strategy proposed if the following condition is satisfied : 

 ∀ t ∈ VC : BehavioralTrust (t) ∨ Credential(t) = true 

It is important to stand out that there is a dependence relationship between the result 
of the evaluation of the behavioral trust and the execution of the evaluation through 
credentials; the second one goes only in the case of a negative evaluation of the first 
(figure 2). This kind of approach, practically establishing the credentials switch as a 
redundancy, has significant impacts in the requirements imposed to the behavioral 
analysis’ mechanisms.  The concern with false negatives almost disappears since the 
non-identification of a user’s behavior doesn’t cause any degradation in the section 
in course, it only leads to the solving of the redundant step of credentials’ exchange.  
On the other hand, a single use of behavioral evaluation would make possible to find 
out the following anomalous conducts: (i) a system’s authenticated user that makes a 
legitimate use to abuse of the system’s resources, (ii) the sporadic use by a colleague 
at work “that asks to borrow” a workstation, (iii) an automated attack launched by a 
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relatively naive user through a typical sequence of attacks.  With the combined use 
of a credentials’ exchange mechanism, the condition (i) naturally looses its’ 
effectiveness, since it is very probable that an authenticated user be also successful in 
an exchange of credentials.  

Fig. 3: Example of behavioral instance 

4 Behavioral evaluation 

This section analyzes the problem of behavioral evaluation through learning, in a 
way that characterizes and differentiates each individual/system’s behavior in terms 
of a discrete data sequence. The characterization of a user’s typical behavior is a 
great challenge, because, besides the inherent variability, there is a change in the 
regular used pattern as a natural consequence of the user’s absorption of new 
knowledge. The use of a learning machine allows training a classifier with a user’s 
historical data, so that it is possible to distinguish different behaviors, considering 
both variability and the evolutive aspect. In this section we examine methods to 
collect a user’s behavioral signature based on learning, and the appropriate definition 
of similarity according to the required context. 

4.1 Behavioral Signature Collecting 

Many of the traditional learning approaches is not suitable for behavioral 
differentiation due to the class of data being processed, i.e. discrete elements with 
nominal values. Neural networks [13] have proved to be useful to continuous series 
of numerical values, typically using Euclidean Distance for similarity computation, 
but there is a major limitation for using it in behavioral differentiation: the necessity 
of retraining for every new user [6]. A very popular and generic class of learning 
machine techniques is the Instance-based Learning (IBL). In this model, a concept is 
represented implicitly by a set of instances that exemplify it (dictionary). In our 
situation, it is possible to directly apply a very simple method of the IBL learning 
model, in which every behavioral instance is directly classified according to the 
generating user. This way, the behavioral signature is represented by a set of a 
specific user's behavioral instances (figure 3), generated in every macro-transition. 
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Definition 4.1. Let I be a set of indexes; the behavioral instance concept ic and the 
behavioral signature ac may be defined as: 

ic  = {ei ∈ StatesC | i ∈ I}  
ac ={ici | i ∈ I} 

4.2 Behavioral Trust Measure 

The degree of similarity S is a function of two behavioral instances which expresses 
a measure of how alike those behaviors are. We examined several measures for 
computing the similarity between two discrete-valued temporal instances. Here we 
describe the measure that we found performs the best on average in empirical 
evaluations. Basically, this procedure must pinpoints pairs of identical elements and 
uses a cumulative calculation to give a bigger weight to identical enchained pairs 
(isentical subsequences). A fundamental requirement for this calculation is no 
restriction about different sizes between ic sequences  (i.e.: {a,b,c,d} & {a,g,d}).  

 
Definition 4.2. Let a and b be two behavioral instances; a preprocessing procedure is 
captured by the function: 
 τ (a,b) = ({z0, z1, … zm-1},{w0, w1, … wn-1})            

Where {z0, z1, … zm-1} is the set of the length of  identical subsequences between a 
and b; {w0, w1, … wn-1} is the set of the length of different subsequences between a 
and b; and the behavior of the function τ  is expressed by the pseudocode of fig.4.  

Fig. 4: Pseudocode of τ(a,b) function 

For example: considering an ic pair {a,g,b,c,d} and {a,b,c,d}, the application of the 
preprocessing function returns: (i) the set {1,3} meaning two identical subsequences: 
one of 1 element (a) and other of 3 elements  (b,c,d); and (ii) the set {1} meaning one 
different subsequence of  1 element (g). 

Definition 4.2. Let (X,Y) = τ (a,b), the similarity degree S between a =(a0, a1, … am-1) 
and b = (b0, b1, … bm-1) is given by the following trio of functions:  
 δ(X,Y) = Sum(X) – Sum(Y)  |  Sum(c0, c1, … cm-1) ∑

−

=
−=

1

0
12

m

i
ic       (1) 

τ(a,b)
Let pi be any position of an array i
Let w, z be arrays of variable length
Let pa, pb, pw, pz equals the first position of 

a, b, w, z respectively
For each pa in {pa until last position of a}, do

If pa equals pb , then
If pw > 0, then

Advances pw to the next position of w
Add 1 to pz

Else, then
If pz > 0, then

Advances pz to the next position of z
Let pt equals the first position of b
Let found equals FALSE

For each pt in {pt until last position of b}, 
do

If pt equals pa, then
Let pb equals pt
If pw > 0, then 

Advances pw to the next position of w
Let found = TRUE
Add 1 to pz
Leave the inner loop

If found equals TRUE
Add 1 to pw

Advances pb to the next position of array b
Return arrays z e w
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The advantage of this type of calculation lies on the possibility to adjust the 
importance given to sequential states by just exchanging the Sum function. Figure 5 
shows a comparison between the similarity values obtained from the set of 
behavioral instances pairs from table 1 for both the linear equation given in (1) and 
the exponential one defined in (4). It is clear that the linear formula is more sensitive 
to small differences among sequences, which is the behavior we were looking for. 
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Table 1. Similarity for linear and exponential function Sum  

a a g b c d a g b c d a g a b d d a b c d e f g h a a b a b c d 
b a b c d g a b c d a b c d d e f g h a b c d 

Linear 0.7775 0.8885 0.7272 0.6330 0.9230 
Exponential 0.5555 0.5679 0.5102 0.5164 0.5212 
 
Using S (similarity) is possible to calculate three independent factors that need to be 
considered in trust : Comparative similarity, Intra-similarity and Inter-similarity. 

 
Comparative Similarity (Scomp) – represents the similitude between the current 
collected instance and the set of instances that form the signature. Essentially, its 
value mirrors how close this behavior is from the previously captured ones. To 
perform this calculation, a similarity function is applied between the current 
behavioral instance and every instance that form the signature, retaining the 
maximum value obtained: 
 }),,(max{ MM

i
M
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M
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M acicicicSScomp ∈∀=           (5) 
where iccur denotes the current computational instance, and acM denotes the 
behavioral signature of the macro-transition M. 

Intra-Similarity (Sintra) – is related to the quality of the user's signature, being 
completely independent of the current behavioral instance sample. This represents if 
a user has a well-formed behavior (when signature instances are repeated, or slightly 
different), or the opposite (when all signature instances are very different amongst 
themselves). Naturally, a bad-formed signature makes the user's behavioral 
validation process difficult. To calculate Sintra, we calculate the mean among every 
resulting values of the similarity function between all 2 to 2 arrangements of the 
signature instances: 
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Inter-Similarity (Sinter) – represents the quality of a user signature in function of the 
complete set of signatures (from different users) associated to the same macro-
transition. A given behavioral instance can be extremely similar to a well-formed 
signature, and even so, not be trusted due to a possible similarity with other existent 
signatures (from several users from the same scenery). Signature similarity makes 
the user differentiation process difficult. Sinter reflects the similarity between a 
given signature and the signature most “alike” from the full set of signatures, and is 
expressed by the following pair of functions: 
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MMM acUacacacacSinter i −∈∀Φ−=    (8) 
where UM denotes the full set of signatures associated  to M from a scenario 
C.  

Finally, trust calculation (Trust) is expressed by the product of these three factors: 
 TrustM  = ScompM*SintraM*SinterM             (9) 
 
Given that trust can be quantified, all there is left is to establish a minimal 
acceptance level TrustRef to evaluate the function BehavioralTrust (definition 3.3): 
 





<
≥

=
TrustRefTrustifFalse
TrustRefTrustifTrue

 Trust(M) Behavioral M

M
       (10) 

5 Experimental evaluation 

The performance of a mechanism such as this is strongly influenced by the kind of 
application and the variety of intrinsic behaviors. Empirical analysis, performed on 
concrete usage examples as test environments, have been largely used for testing 
purposes in similar proposals, as [9, 13]. The major problem of this kind of approach 
is the danger of selecting an extremely inappropriate environment, generating a 
possible false negative evaluation of the mechanism; or, on the other hand, an 
extremely appropriate one, which would also lead to a false conclusion of a 
questionable effectiveness, certainly unadvisable to be generalized. We chose not to 
develop a perfectly suitable website model for the simulation, but rather to perceive 
how the mechanism would behave in different environments that were not initially 
devised to support macrostates or trust evaluation systems. 

The first step was to find ways to adjust the requirements of the trust evaluation 
model in a regular website log. The following items had to be assessed consistently: 
(i) States and Macrostates definition and (ii) Users and user's behavioral instances 

Each possible state e of the website was defined as a HTML or PHP web page, 
logged via a HTTP GET requests. Other requests, mostly for images and stylesheets, 
were discarded. As no user authentication was provided, an user u was defined as 
any known static IP address. Also, since no macrostate boundaries were available, 
every state e was defined as part of the same macrostate M and the following 
conventions were adopted: (i) behavioral instances with less than 5 states would not 
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be considered; and (ii) a behavioral instance is said to have ended when more than 30 
minutes have passed from the last state included in the instance until the next state 
entered by the same user. Those rules suffice the need to distinguish between 
behavioral instances of the same user and prevent the model from analyzing 
instances too small to be meaningful. 

We have experimented with our approach on logs collected at the Computing 
Center Department, Federal University of Rio de Janeiro. We examined the Web-
server logs of different applications through the trust model perspective to see what 
kind and quality of usage patterns were available. 

The first website collected (UFRJ virtual library - www.bibvirtuais.ufrj.br) was 
not appropriate for not showing the actual IP addressess of the machines that made 
the HTTP requests. The second one (UFRJ Architecture and Urbanism school - 
www.fau.ufrj.br), although well structured (for macrostate adaptation), has a poor 
navigation diversity to generate different signatures (very low Sinter value). The last 
website (UFRJ Libraries and Information System - www.sibi.ufrj.br) showed none of 
the above problems and therefore was chosen for the model evaluation. We collected 
access logs from march 31st to september 6th 2006 (160 days), and then devised a 
parser to (i) anonymize all entries, replacing IP addresses and webpages by index 
numbers; (ii) remove all but those IP addresses known to be unique to a single user's 
computer; (iii) remove any sequential state repetitions (page reloads), as the model 
does not predict state transitions to itself; (iv) ignore requests to non-existent 
webpages, considering only the ones with a server return status of 200 (OK) or 304 
(Not Modified); (v) ignore instances with less than 5 states; and (vi) ignore 
signatures with less than 5 instances, the empirical minimum value established for 
the evaluation. The result was 42 valid behavioral signatures files ready to be tested 
by the model prototype. The SIntra values (figure 5) give a clear understanding of 
whether the signatures are good or not, for example: user 34 has little difference 
between its internal behavioral instances, while user 38 had most of its instances 
remarkably differentiated among them. 

 
                             

Fig.5: Sintra measures       Table 2. TrustRef  Evaluation 
 

To simulate the user's input, we retrieved a random behavioral instance from inside 
each user's own signature database, leaving it with n – 1 instances, with n being the 
original number of instances inside the signature. The simulation evaluated every 
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user's input against each signature, and calculated the Trust value for each case. The 
purpose was to see whether the highest Trust value was indeed from the same user as 
the signature in question.  

Figure 6 shows a comparison between the mean values of the actual Trust 
evaluation obtained for each signature against the best false positive result for that 
signature (i.e. input from a different user that achieved the best Trust result against 
that signature). It is relevant to notice that, of all simulations performed with those 
42 signatures, absolutely none held a user whose Trust evaluation was higher than 
the actual owner of the signature being tested. Another pertinent issue lies on the 
significantly low Trust values obtained, mostly because the experiment had rather 
low Sinter values, with a mean value of 0.365, indicating little difference between 
signatures. Even so, it was still possible to differentiate behaviors from the Trust 
results and establish possible positions for a TrustRef mark to be set, considering the 
desired amount of false positives and false negatives, as shown in Table 2.  

Fig. 6: Real Trust x Best false Trust 

5 Conclusions and Future Work 

This paper described a proposal for an integrated use of the concept of trust and 
access control management in secure Web applications. The originality of the 
approach lies on the employ of a user’s behavioral evaluation mechanism (via Web 
navigation track) through a learning machine. The result of this analysis is used in 
the trust evolution process to replace, or complement, the classic use of mechanisms 
for credentials exchange. An important contribution of this work is the similarity 
measure between two representative samples of a user's behavior that, unlike the 
usual, compares behavioral sequences of different lengths.   

It is also noticeable the extent of the proposed heuristics in the calculation of the 
trust level of a behavioral instance, which takes into account three different factors: 
(i) comparative similarity – relationship between the current behavioral instance and 
the signature (behavior resemblance), (ii) intra-similarity – relationship between 
behavioral instances that form the signature (quality of the signature) and (ii) inter-
similarity – relationship between the different existing signatures (signature 
differentiability). 
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The performance of the proposed mechanism is well characterized by 
experimental evaluation that, besides attesting the viability of its utilization in the 
behavioral differentiation context, give some important subsides for the 
establishment of a minimal trust level TrustRef. 

An open question in the proposed approach, and subject of ongoing works, 
concerns the necessity of the use of data reduction techniques, once the signatures 
store all of a user's past behavioral instances. For certain applications, that allow a 
great variability of behaviors, the signature size may grow considerably. It is under 
study the viability of the replacement of a set of similar behavioral instances for 
generic models that capture a certain degree of variability. Another work in progress 
tries to characterize a timetable of the behavior of a certain user, allowing the 
removal of old behaviors from his signature that should not reoccur. 

6 References 

1. J. Lopez, R. Oppliger and G. Pernul, Authentication and authorization 
infrastructures (AAIs): a comparative survey, Computers & Security, 23 - 2004, 
Elsevier, pp. 578-590. 

2. H. Skogsrud, B. Benatallah and F. Casati, Model-Driven Trust Negotiation for Web 
Services, IEEE Internet Computing, 1089-7801/03, Nov/Dec 2003, pp. 45-52. 

3. C. Platzer, Trust-based Security in Web Services, Master‘s Thesis, Information 
Systems Institute, Technical University of Vienna, Austria, 2004. 

4. J. Bacon, K.  Moody and W. Yao, Access Control and Trust in The Use of Widely 
Distributed Services, Software-Practice Experience, 33, 2003, pp. 375–394. 

5. R. Tatyana, L. Zhou, C. Neuman, T. Leithead and K.E. Seamons, Adaptive trust 
negotiation and access control, In tenth ACM symposium on Access control models 
and technologies, ACM Press, Stockholm, Sweden, 2005.  

6. F. Monrose and A. Rubin, Authentication via Keystroke Dynamics, In Fourth ACM 
Conference on Computer and Communication Security - CCS 97, Zurich, 
Switzerland, 1997, pp. 48-56, 

7. A. Guven, and I. Sogukpinar, Understanding Users’ Keystroke Patterns for 
Computer Access Security, Computers & Security, Elsevier, Vol. 22-8, 2003, pp. 
695-706. 

8. A. Peacock, X. Ke and M. Wilkerson, Typing Patterns: A Key to User 
Identification, IEEE Security & Privacy, September/October, 2004, pp. 40-47.  

9. M. Pusara and C.E. Brodley, (2004). “User Re-Authentication via Mouse 
Movements, In CCS Workshop on Visualization and Data Mining for Computer 
Security -VizSEC/DMSEC'04, ACM press, Washington, DC, USA, October, 2004. 

10. T. Lane, and C. Brodley, Temporal Sequence Learning and Data Reduction for 
Anomaly Detection, ACM Transactions on Information and System Security, Vol. 2, 
No. 3, August, 1999, pp. 295–331. 

11. D.W. Aha, D. Kibler and M.K Albert, Instance-based learning algorithms”, Machine 
Learning, Kluwer Academic Publishers, Vol. 6, No 1, January, 1991, pp. 37–66.  

12. M. El-Ramly and S. Stroulia, Analysis of Web-usage behavior for focused Web 
sites: a case study”, Journal of Software Maintenance and Evolution: Research and 
Practice, No. 16, 2004, pp. 129–150.  

13. T. Lane, “Machine learning techniques for the computer security”. Ph.D. thesis, 
Purdue University, 2000. 


