Proceedings of the 1999 IEEE
Intemauonal Conference on Robotics & Automation
Detroit, Michigan » May 1999

CONTROLAB MUFA: A Multi-Level Fusion Architecture for Intelligent
Navigation of a Telerobot

E.P.L. Aude*, G.HM.B. Carneiro**, H. Serdeira*, J.T.C. Silveira*, M.F. Martins*, E.P. Lopes***

NCE/UFRJ*

IME/RJ**

IM/UFRJ***

NCE/UFRJ, P.O. Box 2324, Rio de Janeiro - RJ, 20001-970, Brazil, e-mail: elaude@nce.uffj.br

Abstract

This paper proposes a MUlti-level Fusion Architecture
(MUFA) for controlling the navigation of a tele-
commanded Autonomous Guided Vehicle (AGV). The
architecture combines ideas derived from the
Jundamental concepts of sensor fusion and distributed
intelligence. The focus of the work is the development of
an intelligent navigation system for a tricycle drive AGV
with the ability to move autonomously within any office
environment, following instructions issued by client
stations connected to the office network and reacting
accordingly to different situations found in the real
world. The modules which integrate the MUFA
architecture are discussed and results of some
simulation experiments are presented.

1 Introduction

Two fundamental concepts have made possible the
design of intelligent autonomous mobile robots which
are able to act in a dynamic system such as the real
world. The first one is the use of sensor fusion
techniques [1] which enable the system to have more
consistent environment information and to achieve better
reasoning based on this information. The second
important contribution is the implementation of the
different robot skills in a distributed fashion [2], which
leads to a system consisting of more specialized and
optimized parts.

Figure 1: Basic Operation of the CONTROLAB AGV

0-7803-5180-0-5/99 $10.00 © 1999 IEEE

465

The MUIti-level Fusion Architecture (MUFA)
combines these two important concepts for controlling
the navigation of a tele-commanded Autonomous Guided
Vehicle (AGV). In this paper, this architecture is used
in the development of an intelligent navigation control
system for an AGV capable of moving through any type
of office environment and of reacting accordingly to
different unexpected situations found in the real world.
The AGV moves autonomously and follows instructions
issued by any station connected to the office network.
Figure 1 shows the basic operation scheme of the
CONTROLAB AGV.

Figure 2 shows the overall MUFA architecture of the
AGYV intelligent navigation system. It consists of the
following modules:

1. Autonomous Guided Vehicle: a moving robot
equipped with a radio transceiver, a video camera,
sonar sensors and hardware/software resources for
storing and processing information;

Control System: integrates all the controllers used
for commanding the direction and speed of the AGV
movement and the movements of the AGV structures
holding navigation sensors;

Architect: an object-oriented software tool which
supports the editing of the environment floorplan to
be sent to the AGV;

Request Server: responsible for: organizing requests
for the AGV operation sent by client stations;
sending to the AGV the floorplan description and the
client requests; receiving from the AGV image
information on its operation; and sending this
information to the client stations;

Trajectory Planner: an on-board software module
which establishes a trajectory to be followed by the
AGV from its current position to the desired
destination considering the floorplan description;
Intelligent Obstacle Avoidance System: an on-
board sub-system which detects the presence of
obstacles close enough to the AGV, using sensor
fusion and arbitration on information produced by the
Sonar System and by the Vision System, and defines,
in these cases, the AGV trajectory based on rules;
Global Position System: an on-board sub-system

that defines the current AGV location;

Intelligent Supervisor System: an on-board sub-
system that, using information produced by the
Intelligent Obstacle Avoidance System and the
Global Position System, takes decisions that affect the
AGYV navigation depending on whether the desired
path is free, has unknown obstacles or is blocked;
The AGV has a priori knowledge of the environment
in which it should travel. It stores its description as a
floorplan and a derived Connectivity Graph. The
floorplan is produced by the Architect and is supplied to
the AGV by the Request Server. At the start of its
operation, the AGV also receives information on its
initial room within the environment floorplan.

The Request Server receives from the several client
stations orders for the AGV. An order consists of the
destination room identification and the desired final
location within this room. Requests are stored in a queue
and a new request is only sent to the AGV after
completion of the previous one.

In the application currently under consideration, the
CONTROLAB AGY receives from the Request Server a
request to go to a particular location within the
environment. The Trajectory Planner then defines the
best way to go from the AGV current position to the
desired destination. During the trip, the AGV Intelligent
Obstacle Avoidance System uses vision and sonar sensor
information to detect the presence of previously
unknown obstacles. When this occurs, the Arbiter uses a
set of rules to change the original route in oder to avoid
the obstacles. In addition, when a given segment of the
global trajectory to be followed is found to be blocked,
the Global Trajectory Planner is used to redefine an
alternative route starting from the AGV position when
the blocking situation was detected

Intelligent Obstacle
Avoidance System

Figure 2: The MUFA Architecture

In Section 2 of this paper, the AGV mechanics,
hardware components and control system are presented.
Section 3 briefly describes Architect as an object-

466

oriented tool for the generation of the AGV work
environment description. It also discusses the
implementation of the Request Server, the techniques
used for wireless communication between the AGV and
the Request Server and the adopted approach used for
compressing image information transmitted by the AGV
to the Request Server.

In Section 4, the Trajectory Planner subsystem is
described. Both the procedure used for defining a global
trajectory on a Connectivity Graph derived from the
environment floorplan and the operation of the Detailed
Local Trajectory Planner are discussed. Section 5
discusses the implementation of the Intelligent Obstacle
Avoidance System which consists of: a Vision System
capable of detecting the presence of obstacles ahead of
the AGV; a Sonar System which may give more precise
information on the distance of an obstacle to the AGV;
and a Sensor Fusion and Arbiter Subsystem which takes
a final decision in relation to the presence or not of
obstacles on the AGV way, considering the information
produced by the other two subsystems, and applies a set
of rules to re-define the AGV trajectory in the presence
of unexpected obstacles.

Section 6 describes the Intelligent Supervisor System
and presents results of simulation experiments showing
the behaviour of the AGV in several distinct situations.
Finally, Section 7 presents the main conclusions of the
paper and directions for future work.

2. The AGV Description

The AGV has a cylindrical body. Its diameter is 40
cm long and its height is 91 cm. It is a tricycle drive with
two fixed wheels and a steering wheel. The two fixed
wheels have a common axis but are driven by
independent DC motors which provide independent
velocity control. Angular velocity is measured through
incremental encoders. The steering wheel can rotate
around a vertical axis and is commanded by a DC motor
to define the AGV movement direction. An incremental
encoder is also used to measure the angular velocity
around the vertical axis.

A black and white wide-angle camera is placed on
top of the AGV body. It can rotate around a vertical and
a horizontal axis under the command of two step motors.
This freedom of movement allows the camera to “see”
low and lateral obstacles located near the AGV body.
On top of the AGV, there is also an antenna to allow
wireless communication with the Request Server.

Around the AGV waist, which is located 50 cm above
the AGV basis, there is a 6 cm wide opening. Inside this
opening,there is a 30 cm long horizontal bar holding
three 40 Khz sonar transmitter/receiver pairs. The first
pair is placed at the middle of the bar and the other two

at its ends. This set of sensors allows the detection of
obstacles around the AGV since the horizontal bar can
move around the AGV body vertical axis under the
command of another step motor. Finally, the AGV is
also equipped with a fiber optic gyroscope for the
measurement of its angular rotation.

The AGV Control System controls the angular
velocity of the two fixed wheels and the angular position
of the steering wheel through a multivariable LQG
control algorithm [3]. In addition, the AGV Control
System has additional single-input single-ouput
controllers for the rotation angle of the horizontal bar
which holds the sonar sensors and the video camera
horizontal and vertical movements.

The AGV desired trajectory is described by the
velocity vector at its geometric center. From this
information, the values of the velocities at the fixed
wheels and the angle to be applied to the steering wheel
are determined and used as set-points by the controller
when steering the AGV.

3 The Architect Module, the Request Server
and Communication Techniques

3.1 The Architect Module

Architect has been designed to produce a description
of generic floorplans. A textual format has been adopted
to describe practically any kind of indoors environment.
Architect works as a floorplan graphic editor, supporting
commands for creating, removing and modifying
floorplan elements and for naming the floorplan rooms.
Architect has been implemented in C++ (Borland C++
Builder) for Windows 95. In its initial version, Architect
handles four different types of rectangular elements with
integer coordinates: FREE AREAS, WALLS, DOORS
and BLOCKED AREAS,

3.2 The Request Server Structure and Operation

The Request Server is responsible for sending
information to the AGV on the orders issued by the
client stations and on the environment description
produced by the Architect. It receives the end of task
message as well as image and position information from
the AGV which may be transmitted to the client stations
in order to allow remote monitoring. The
implementation of the required multicasting capability
wthin the Request Server is based on a protocol
proposed by Deering [4] for the Internet. Figure 3 shows
the basic functionality of the Request Server and its
interactions with other modules of the MUFA
architecture.

The Request Server has also been implemented in

467

C++ (Borland C++ Builder) for Windows 95. Figure 4
shows a summarized diagram of classes and objects of
the client/server system. Both the client and the server
have similar diagrams.

Request Server - Global position
[Request Scheduler |+ Compressed image |
| Multicast i v AGY
I AGV Visual Image - Requests j
I Global Position — - Floor plan
I Request List - Initial
[Connected Clients location

mpressed image

Floor L.
plan req. global m:on
req. list
Architect Clients
System Systems equest
Requests &
clients list
Fl°_°f plan Decompressed ~ AGYV trajectory
display image display display

Figure 3: Request Server Functionality

7 server/ T\

client

messages

/wireless)) ((Telizbic reliabl (Tequest’)) [/~ map
connect. connect. connect. manager || [[manager
server server server

- |)|) |\ -

Figure 4: Diagram of Classes and Objects

In Figure 4, form represents the screen with text
windows, image windows, buttons and menus. The
wireless connection server performs the full
communication protocol with the AGV. The reliable
connection server manages the connections with each
client implemented through sockets using TCP/IP. The
unreliable connection server manages faster connections
that cannot ensure that correct messages will arrive at
the destination and that the original message order will
be preserved. Due to its low overhead, this
implementation may be suitable for some real time
applications. The request manager accepts the inclusion
of new requests by the clients and also the elimination of
requests which have not yet been sent to the AGV.
Currently, requests are served in FIFO order. The map
manager is able to read a floorplan produced by the
Architect module and to represent on it the current AGV
position, which is sent by the AGV. This information is
also sent through multicasting to the clients. The image
manager is activated whenever a compressed image is
received by the server through wireless communication
with the AGV or by the client through the Internet
(image sent through multicasting by the server).

Figure 5 shows a snapshot of the system presentation

screen on the server.

Figure S: Snapshot of the Server Screen

3.2 Communication Techniques

This section describes the techniques used for
wireless communication between the Request Server and
the AGV and for image compression by the AGV and
decompression at the server and client stations before

display.

3.2.1. Wireless communication

The equipment used for wireless communication,
Radiometrix RPC-433-A: IC+BIM, can reliably transmit
data in packets of up to 27 bytes within a range of 30 m
at 40 kbits/s half-duplex.

RPC is not fault-tolerant. When an error is detected,
it simply does not send the packet to the host. To try to
overcome this limitation, an ARQ (Automatic Repeat
Request) stop-and-wait protocol [5], which detects an
error and asks for data retransmission, has been used in
the Data Link Layer. With this technique reliable and
low cost communication is achieved.

322 Real time image compression and
decompression

The approach adopted for implementing real time
video image compression and decompression follows the
H.263 specification [6].

The AGV image is represented by a 242 x 199 array
of pixels with gray levels in between 0 (black) and 255
(white). This format is transformed into QCIF (Quarter
Common Intermediate Format) [7] with 176 x 144 pixels
by discarding the leftmost columns and the bottom lines
of the image array. There are three types of frames which
can be produced by compression techniques: the I (intra
mode) frame, which uses only spatial compression; the P
(predicted) frame with time and spatial compressions

using the previous encoded image (I or P) as a reference;
and the B (bi-directional) frame, which is based on two P
frames, the previous encoded P frame and the current
one under codification.

From the different options available to improve the
performance of the image compression process, only the
arithmetic coding [8] and the codification of PB frames
(P frame + B frame) proved to be amenable for real-time
applications. In addition, the use of I frames or P frames
only has also been considered. It is important to note that
as both P and PB frames depend on previous images, it is
not advisable to transmit only these frames since if any
error takes place, all following frames may be corrupted.
To overcome this problem an I frame is sent from time to
time to synchronize the receiver.

Table 1 shows experimental results for the
evaluation of compression schemes on a Pentium@233
Mhz computer. All input images are compliant with
QCIF and in all measurements the same sequence of 50
images produced by the AGV camera when moving
inside a room has been used.

Considering that the wireless communication in use
transmits data at 40kbits/s, Table 1 shows that this is
sufficient to cope with the transmission rates produced
by all compression schemes. However, for real-time
applications, a key factor is the image transmission rate.
Regarding this aspect, the compression technique based
only on I frames is the one that produces by far the best
result. Therefore, it has been adopted within the
CONTROLAB AGV regardless of the bad results it
produced for the compression rate.

1F+4P | 1#SP | 501 | PB |Ar.Cod.

120 | 129 34 | 195 | 120

31,18 | 44,34 | 21,64 | 64,52 | 30,80

4063 | 2659 | 20664 | 1209 | 4111

Tmages/s| 047 | 039 | 147 | 026 | 042

Table 1: Evaluation of Image Compression Schemes

At the reception end of the image transmission, a
variable length buffer is used to store the compressed
image since its size is not known a priori.

The image decompression module is multithreaded,
operates under Windows 95 and has been implemented
using Borland C++ Builder. When the Request Server
process starts, three threads are created. They work
cooperatively and share data between them. To solve
synchronization problems and avoid race conditions,
semaphores are used under the producer-consumer
scheme. The first thread becomes ready to run whenever

a new packet arrives. It stores in a buffer all arriving
packets until an end-of-message packet is received. The
buffer size is big enough to store several compressed
image frames. The second thread becomes ready to run
whenever the buffer holds at least one compressed frame.
It performs the H.263 decompression algorithm. Finally,
the third thread becoems ready to run whenever a new
decompressed image frame is produced. Its function is to
show s this frame on the screen.

4 Trajectory Planning

The execution of each motion command by the AGV
consists of two phases: the definition of the trajectory to
be followed and the AGV movement along this trajectory
avoiding unknown obstacles detected on the way. The
trajectory definition task is described in this section and
is performed by two sub-systems: the Global Trajectory
Planner and the Detailed Local Trajectory Planner.

4.1 Global Trajectory Planning

The Global Trajectory Planner is responsible for
generating and analysing all possible paths from the
AGV original location to the desired final location.

As the Architect module, the Global Trajectory
Planner also works with rectangular areas. Threfore, any
non-rectangular ROOM is divided into several
rectangular FREE AREAS. DOORS are generated to
connect these FREE AREAS. From this structure
containing FREE AREAS and DOORS, the Global
Trajectory Planner creates a Connectivity Graph.
Figure 6 illustrates the FREE AREA and DOOR
structure and the Connectivity Graph generated for a
particular floorplan.

1 2
- @ @ —7--& -
_@;‘_IA
3 ® 4

® ®)

Figure 6: (a) Environment Free Areas and Doors
(b) Connectivity Graph

Within the Connectivity Graph, nodes are associated
with DOORS. An edge connects two nodes whenever the
DOORS associated with them open to a common FREE
AREA. Edge weights are given by the product of the
distance between the centers of the DOORS and the

469

common FREE AREA weight.

Let us consider S as the initial AGV location in the
FREE AREA 1, and G, located in the FREE AREA 2b,
as the destination point. The Global Trajectory Planner
generates the Connectivity Graph adding two nodes
associated with S and G and then calculates the
minimum-cost path between S and G. Figure 7 illustrates
the previous floorplan with the inclusion of S and G,
placed in the FREE AREAS 1 and 2b, respectively. The
assigned weights indicate that FREE AREAS 1 and 3
should be avoided and that it should be given priority to
using FREE AREA 5, which represents a corridor. All
possible connections between DOORS are shown both in
the topological scheme and in the Connectivity Graph.
The best path -5, dls, da,s, dyazy, G, with a total cost of
294.3 - is emphasized

Figure 7: (a) Global Trajectory between S and G
(b) Connectivity Graph including S and G

During the operation of the AGV, the Global
Trajectory Planner may be requested to recalculate the
global trajectory by the Intelligent Supervisor System
whenever the AGV sensors detect that previously
unknown obstacles are completely blocking one of the
FREE AREAS that have to be crossed by the AGV in its
trajectory from source to destination. In this case, the
Global Trajectory Planner redefines the Connectivity
Graph by introducing a BLOCKED AREA element,
which behaves like a WALL in the floorplan and finds
again the minimum-cost global path connecting the
AGYV current location to the desired destination point.

4.2 Detailed Local Trajectory Planning

Each edge of the path defined by the Global
Trajectory Planner in the Connectivity Graph defines the
start and end points of a global trajectory segment. The
precise trajectory to be followed by the AGV between
each of these pairs of points is defined by the Detailed
Local Trajectory Planner using a rule-based PFIELD
algorithm proposed by Aude [9]. This trajectory is
followed by the AGV whenever unexpected obstacles are
not detected.

5 The Intelligent Obstacle Avoidance System

The Intelligent Obstacle Avoidance System consists
of three parts: the Vision System, the Sonar System and
the Arbiter.

5.1 The Vision System

The Vision System works on image information
captured by the video camera. It is based on the
principle that objects near the lower border of the
image frame are closer to the AGV while those near the
top border are farther away [10]. The image processing
performed by the Vision System aims at detecting
borders which represent obstacles sitting on or close to
the AGV path and organizing this information
efficiently to simplify the Arbiter work.

This processing starts with the application of an
intelligent threshold which is able to take into
consideration the scene illumination conditions [3].
Following, edge detection is performed with the use of
a Sobel filter which is applied bottom-up and from left
to right to the image. The next step is to divide the
image in 5 vertical regions as shown in Figure 8. The
goal is to simplify the Arbiter analysis of the image
information. Each region has a fuzzy meaning within
the image. Region 2, the central one, represents the
straight ahead path. Regions 1 and 3 represent areas
slightly to the left and to the right, respectively. Finally,
regions 0 and 4 are related to areas farther away to the
left and to the right, respectively.

Straight shead
Soft left Soft right

il

01234 regions: 0123 4
Figure 8: Image division inregions and levels

regions:

Each vertical region is divided in 10 horizontal
levels, which give information on the proximity of an
edge to the AGV. When level changes occur within the
same vertical region, this information is stored in a
linked list for the Arbiter use. For each level change, a
new element is added to the list.

The linked list is filled by scanning the image from
left to right and determining the region and level of
every image dot. A new node is created whenever a
level change occurs. The node structure indicates the
initial column where that level is present. There are as
many nodes as level changes within the region.

5.2 The Sonar System

The Sonar System consists of three pairs of sonar

470

transducers attached to a horizontal bar (the sonar bar)
which is driven by a step motor to be able to rotate up to
360° around the AGV central vertical axis. The use of a
pair of transducers, one for transmission and the other
for reception in each set, allows distances as small as
35cm to be measured. Therefore, obstacles as close as
25cm to the AGV border will be detected by the central
pair of transducers.

5.3 The Arbiter

This system analyses the information generated by
the Sonar and the Vision Systems and decides whether
there are previoulsy unknown obstacles close enough to
the AGV. Three types of decisions can be taken:
¢ there is no obstacle and, threfore, no trajectory

change takes place;

e there is an obstacle and the new trajectory is defined
by the Arbiter according to some rules;

o there is a total blockage and the task to redefine a
new global trajectory is handed to the Global
Trajectory Planner by the Intelligent Management
System.

Figure 9 shows the image generated by the Vision
System and the measurements produced by the Sonar
Systems when a blockage is found. The horizontal line
crossing the whole image near the bottom frame border
indicates that there is no free of obstacle path to be
followed. This indication is reinforced by the very
similar measurements produced by the three sonars.

St | S2 | S3
211 | 212 | 214

Figure 9: Blockage detection

When the AGV approaches an obstacle folowing the
trajectory dictated by the PFIELD algorithm, the Vision
System will report the presence of an edge near the
bottom of the image frame. If the sonar bar is parallel to
the obstacle, the Sonar System will be able to measure
the distance to the obstacle. Otherwise, the Sonar
System fails and the Arbiter requests the rotation of the

sonar bar until it gets parallel to the obstacle. From then
on, if along the PFIELD flow direction the path is
blocked, the AGV will be commanded to move along a
parallel line to the obstacle in the direction indicated by
the Vision and the Sonar Systems as the preferential
one. This verification is performed before each AGV
moving step. When the AGV is close to a corner, the
Arbiter has to find out if there is room for the AGV to
turn the corner. Several situations may occur as shown
in Figure 10.

width to

discover

< obstacle

wall

parallel
direction

0

Figure 10: The AGV Turning an Obstacle Corner

In Figure 10(a), both the Sonar and the Vision
Systems detect the presence of the wall and the distance
to it is supplied by the Sonar System. Therefore, the
Arbiter can decide if the AGV can turn the corner.

On the other hand, in Figure 10(b), the Sonar
System is unable to measure the distance to the opposite
wall. So, this task is assigned to the Vision System by
the Arbiter. To do that, the AGV is commanded to turn
round the corner. At each step, the AGV camera is
required to rotate around a vertical axis. When the
Arbiter detects both corners on the same horizontal line
within the image, the Vision System is required by the
Arbiter to calculate the entrance width.

In any case, if there is room for the AGV to turn the
corner it does it on a circular trajectory until a point is
reached where the Sonar System can measure the
distance to the same corner again. From then on, the
AGYV follows a parallel route to the obstacle side.

6 The Intelligent Supervisor System

The Intelligent Supervisor System is responsible for
defining the final trajectory to be followed by the AGV.

471

It consults the Intelligent Obstacle Avoidance System to
get information on the situation of the trajectory
currently followed by the AGV. It can be reported as
free, blocked or partially blocked by an obstacle. In the
first case, the final trajectory is dictated by the Detailed
Local Trajectory Planner using the rule-based PFIELD
algorithm. In the second case, the Intelligent Supervisor
System requests the Global Trajectory Planner to reroute
the global trajectory. Finally, in the third case, the final
AGV trajectory is defined by the Arbiter of the
Intelligent Obstacle Avoidance System.

All examples shown in Figures 11 to 14 are related
to the task of defining the AGV trajectory to go from
the start position (S) to the goal position (G) placed in
the L-shaped room. The sub-goals along the trajectory
have been defined by the Global Trajectory Planner as
decribed in Section 4. Figure 11 shows all possible
trajectories generated by the rule-based PFIELD
algorithm. Figure 12 shows the trajectory followed by
the AGV when no unexpected obstacle is present on its
way. Therefore, this trajectory is totally defined by the
rule-based PFIELD algorithm.

Figure 11: All Possible Trajectories Generated by the
PFIELD Algorithm

Figure 12: AGV Following the PFIELD Generated
Trajectory

Figure 13 shows the trajectory followed by the AGV
when obstacles are present along its previously defined

trajectory. In this case, the Arbiter modifies the original
trajectory by using the sensor fusion techniques and the
rule-based decision scheme discussed in Section 5.

In Figure 14, the previously defined trajectory for the
AGV is found to be totally blocked when the AGV is
already trying to reach the goal. In this case, the
Intelligent Supervisor System requests the Global
Trajectory Planner to redefine the global route between
the current AGV position and the goal. The resulting
trajectory is shown in Figure 14.

Figure 13: AGV Trajectory Avoiding Obstacles

Figure 14: AGV Trajectory when a Blockage is Found

7 Conclusions and Future Work

A MuUlti-level Fusion Architecture (MUFA) for
solving the problem of robot navigation in uncertain
environments is proposed. The benefits of sensor fusion
and distributed intelligence are merged in this
architecture. This architecture is applied to the
development of an intelligent navigation control system
for a tele-commanded AGV which is able to avoid
unexpected obstacles in its trajectory using both vision
and sonar sensor information.

Simulation experiments have shown promising
results in the ability of the system to cope with different
real world situations. Future work will focus on the use
of this architecture with multiple-robots and on the

472

introduction of evolutionary algorithms in most of the
architecture sub-systems.

8 Acknowledgements

The authors would like to thank the support given by
CNPg/RHAE, Brazil, to the development of this
reasearch work.

9 References

[1] Kam, M., Zhu, X., Kalata, P., Sensor Fusion for
Mobile Robot Navigation, Proceedings of the IEEE,
Vol. 85, No. 1, January 1997, pp. 108-119

[2] Brooks, R.A., A Robust Layered Control System for
a Mobile Robot, IEEE Journal of Robotics and
Automation, RA-2, March 1986, pp. 14-23

[3] Aude, E.P.L., Silva, F.A.B., Lopes, E.P., Serdeira,
H., Martins, M.F., CONTROLAB: An Integrated System
Jor Intelligent Control of Robot Arms, Proc. 1995 IEEE
Conference on Robotics and Automation, Nagoya,
Japan, May 1995

[4] Deering, S., Host Extensions for IP Multicasting.
STD 5, RFC 1112, Stanford University, August 1989

[S] Bertsekas,D.P., Gallager,R., Data Networks. 2™
edition. Prentice Hall, Inc. 1992

[6] ITU - International Telecomunication Union. ITU-T
Recommendation H.263. Line Transmission of Non-
Telephone Signals. Video Coding for Low Bitrate
Communication, 1995

[7} CCIR (International Radio Consultative Committee)
Recommendation 601 (Also Resolutions and Options)
Volume XI - Part 1 - Broadcasting Service (Television).
pp 95-104. 1990

[8] Witten, L.H., Neal, R.M. and Cleary, J.G., Arithmetic
Coding for Data Compression., Comm. ACM, vol. 30,
no. 6, 1987, pp. 520-540

[9] Aude, E.P.L., Silveira, J.T.C., Silva, F.A.B., Lopes,
E.P., Serdeira, H., Martins, M.F, CONTROLAB:
Integration of Intelligent Systems for Speech
Recognition, Image Processing and Trajectory Control
with Obstacle Avoidance Aiming at Robotics
Applications, Proc. SPIE’s Int’l Symposium on
Intelligent Manufacturing, Pittsburgh, Pensylvannia,
USA, October 1997

(10] Gomi, T., Ide, K., Vision Based Navigation for an
Office Messenger Robot, Proceedings of the IROS’94,
Munich, Germany, September 1994

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

	470f9:

